Solid Mechanics and Its Applications

Antonio J. M. Ferreira
Nicholas Fantuzzi

MATLAB Codes
for Finite
Element
Analysis

Solids and Structures
Second Edition
@ Springer

Solid Mechanics and Its Applications

Volume 157

Founding Editor
G. M. L. Gladwell, University of Waterloo, Waterloo, ON, Canada

Series Editors

J. R. Barber, Department of Mechanical Engineering, University of Michigan, Ann
Arbor, MI, USA

Anders Klarbring, Mechanical Engineering, Linképing University, Linkdping,
Sweden

The fundamental questions arising in mechanics are: Why?, How?, and How much?
The aim of this series is to provide lucid accounts written by authoritative
researchers giving vision and insight in answering these questions on the subject of
mechanics as it relates to solids. The scope of the series covers the entire spectrum
of solid mechanics. Thus it includes the foundation of mechanics; variational
formulations; computational mechanics; statics, kinematics and dynamics of rigid
and elastic bodies; vibrations of solids and structures; dynamical systems and
chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials;
rods, beams, shells and membranes; structural control and stability; soils, rocks and
geomechanics; fracture; tribology; experimental mechanics; biomechanics and
machine design. The median level of presentation is the first year graduate student.
Some texts are monographs defining the current state of the field; others are
accessible to final year undergraduates; but essentially the emphasis is on
readability and clarity.

Springer and Professors Barber and Klarbring welcome book ideas from
authors. Potential authors who wish to submit a book proposal should contact
Dr. Mayra Castro, Senior Editor, Springer Heidelberg, Germany,
email: mayra.castro@springer.com

Indexed by SCOPUS, Ei Compendex, EBSCO Discovery Service, OCLC,
ProQuest Summon, Google Scholar and SpringerLink.

More information about this series at http://www.springer.com/series/6557

mailto:mayra.castro@springer.com
http://www.springer.com/series/6557

Antonio J. M. Ferreira -
Nicholas Fantuzzi

MATLAB Codes for Finite
Element Analysis

Solids and Structures

Second Edition

@ Springer

Antonio J. M. Ferreira Nicholas Fantuzzi

Engenharia Mecanica DICAM Department
Universidade do Porto University of Bologna
Porto, Portugal Bologna, Italy

ISSN 0925-0042 ISSN 2214-7764 (electronic)
Solid Mechanics and Its Applications

ISBN 978-3-030-47951-0 ISBN 978-3-030-47952-7 (eBook)

https://doi.org/10.1007/978-3-030-47952-7

1** edition: © Springer Science+Business Media B.V. 2009

2" edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2020

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8406-4882
https://doi.org/10.1007/978-3-030-47952-7

I dedicate this book to Sara, with love.
—Antonio Ferreira

To Ilaria, Nina and Lena.

Amor gignit amorem.

—Nicholas Fantuzzi

Preface to the Second Edition

This new edition comes 10 years after the first publication. The main reason is due
to some physiological changes into MATLAB programming and tools. The aim
of the book is to present finite element programming with the help of MATLAB
easy implementation style. Codes are not optimized to get best performances but to
enhance clarity to readers. Finite element programming is presented via classical
examples from structural mechanics. Readers can easily start from the given codes
and modify them according to their needs.

In this book, most common problems for 1D and 2D structures are presented
such as static, free vibration, buckling and linear time history analyses. Not all the
given analyses are presented and solved for all the given structural models.
However, readers can easily use theories and codes presented in order to extend the
given codes to problems not given in the book.

Major modifications to the first edition are listed below

e Reviewed and improved MATLAB introductory chapter with more samples and
programming details.

e General finite element code review and cleaning. Removal of MATLAB struct
implementations, only plain MATLAB codes are used.

e Expanded theory and codes for the free vibration analysis of 2D and 3D trusses.

e Expanded theory and codes for the free vibration analysis of 2D and 3D
Bernoulli frames.

e Expanded theory and codes for the buckling problem of Bernoulli beams.

e Enhanced graphical output using Hermite interpolation for Bernoulli beams and
frames.
Improved theoretical background of Timoshenko beam theory.

e Expanded theory and codes for the free vibration analysis of 2D plane stress
problems.

e Expanded theory and codes of Q8 and Q9 elements for plane stress.

e New codes for stress extrapolation and inter-element averaging for 2D plane
stress.

vii

viii

Preface to the Second Edition

New codes for bending of Kirchhoff plates with conforming and not-conforming
elements.

Improved theory and new codes of Q8 and Q9 elements for Mindlin and lam-
inated FSDT plates.

Expanded theory and codes for buckling of laminated FSDT plates.

New chapter for the bending and free vibration solutions of functionally graded
Timoshenko beams.

New chapter for the bending and free vibration solutions of functionally graded
Mindlin plates.

New chapter on linear time transient analysis for Timoshenko beams.

New chapter on linear time transient analysis for Mindlin plates.

The authors do not guarantee that the codes are error-free, although a major

effort was taken to verify all of them. The given codes have been tested under
MATLAB R2019a; therefore, users should use this version or greater ones when
running these codes.

Any suggestions or corrections are welcomed by an email to ferreira@fe.up.pt.

Porto, Portugal Antonio J. M. Ferreira
Bologna, Italy Nicholas Fantuzzi
2019

mailto:ferreira@fe.up.pt.

Preface to the First Edition

This book intend to supply readers with some MATLAB codes for finite element
analysis of solids and structures.

After a short introduction to MATLAB, the book illustrates the finite element
implementation of some problems by simple scripts and functions.

The following problems are discussed:

discrete systems, such as springs and bars

beams and frames in bending in 2D and 3D

plane stress problems

plates in bending

free vibration of Timoshenko beams and Mindlin plates, including laminated
composites

e buckling of Timoshenko beams and Mindlin plates

The book does not intend to give a deep insight into the finite element details,
just the basic equations so that the user can modify the codes. The book was
prepared for undergraduate science and engineering students, although it may be
useful for graduate students.

The MATLAB codes of this book are included in the disk. Readers are wel-
comed to use them freely.

The author does not guarantee that the codes are error-free, although a major
effort was taken to verify all of them. Users should use MATLAB 7.0 or greater
when running these codes.

Any suggestions or corrections are welcomed by an email to ferreira@fe.up.pt.

Porto, Portugal Antonio Ferreira
2008

ix

mailto:ferreira@fe.up.pt

Contents

1 Short Introduction to MATLAB 1
1.1 Introduction 1
1.2 Getting Started 2
1.3 MatriCes 3

1.3.1 Operating with Matrices 4
1.3.2 Statements 5
1.3.3 Matrix Functions 5
1.3.4 Inverse. i 6
1.3.5 Component Operations 6
1.3.6 Colon Notation and Submatrices 7
1.4 Loops and Repetitive Actions 10
1.4.1 Conditionals, if and Switch 10
1.4.2 Loops: For and While 11
1.4.3 Relations and Logical Operators 12
1.4.4 Logical Indexing. 13
1.5 Library and User Defined Functions 14
1.5.1 Standard Library 14
1.5.2 Vector Functions 15
153 Matrix Functions 15
1.5.4 Scripting and User’s Defined Functions 16
1.5.5 Debug Mode 19
1.6 Linear Algebra 19
1.7 Graphics. 20
1.7.1 2D Linear Plots 20
1.7.2 3D Linear Plots 21
1.7.3 3D Surface Plots. 23
1.7.4 Patch Plots 23
References 25

xi

Xii

Contents
Discrete Systems 27
2.1 Introduction 27
2.2 Springs and Bars. L 27
2.3 Equilibrium at Nodes 29
2.4 Some Basic Steps 29
2.5 First Problem and First MATLAB Code. 30
References 36
Bars or Trusses. 37
3.1 Introduction 37
3.2 A BarElement 38
33 Post-computation of Stress. 43
34 Numerical Integration 43
35 Isoparametric Bar Under Uniform Load 44
3.6 Fixed Bar with Spring Support 48
3.7 Bar in Free Vibrations. 52
References 56
Trussesin 2D Space 57
4.1 Introduction 57
4.2 2D TruSSesot 57
4.3 Stiffness Matrix. 59
4.4 Mass MatriXo 59
4.5 Post-computation of Stress. 60
4.6 First 2D Truss Problem 61
4.7 Second 2D Truss Problem 66
4.8 2D Truss with Spring 69
4.9 2D Truss in Free Vibrations 72
Reference 75
Trussesin 3D Space 77
5.1 Introduction 77
52 Basic Formulation. 77
5.3 First 3D Truss Problem 79
54 Second 3D Truss Example. 83
5.5 3D Truss Problem in Free Vibrations 86
Reference 88
Bernoulli Beams 89
6.1 Introduction 89
6.2 Bernoulli Beam. 89
6.3 Bernoulli Beam Problem 93

6.4 Bernoulli Beam with Spring 97

Contents xiii

10

11

6.5 Bernoulli Beam Free Vibrations 99
6.6 Stability of Bernoulli Beam 101
References 104
Bernoulli 2D Frames. 105
7.1 Introduction 105
7.2 2D Frame Element 105
7.3 First 2D Frame Problem 107
7.4 Second 2D Frame Problem 111
7.5 2D Frame in Free Vibrations 118
Bernoulli 3D Frames. 123
8.1 Introduction 123
8.2 Matrix Transformation in 3D Space 123
8.3 Stiffness Matrix and Vector of Equivalent Nodal Forces 126
8.4 Mass MatriXot 127
8.5 First 3D Frame Problem 128
8.6 Second 3D Frame Problem 131
8.7 3D Frame in Free Vibrations 136
Grids. 141
9.1 Introduction 141
9.2 First Grid Problem 143
9.3 Second Grid Problem 147
Timoshenko Beams 151
10.1 Introduction 151
10.2 Static Analysis i o i o 151
10.3 Free Vibrations 159
104 Buckling Analysis. 165
References 170
Plane Stress. 171
11.1 Introduction 171
11.2 Displacements, Strains and Stresses 171
11.3 Boundary Conditions. 173
11.4 Hamilton Principle 173
11.5 Finite Element Discretization 174
11.6 Interpolation of Displacements. 174
11.7 Element Energy 175

11.7.1 Quadrilateral Element Q4 176

11.7.2 Quadrilateral Elements Q8 and Q9. 179
11.8 Post-processing 181

11.8.1 Stress Extrapolation 182

11.8.2 Inter-element Averaging 184

Xiv

12

13

14

Contents

11.9 Platein Traction 184
11.10 2D Beamin Bending 197
11.11 2D Beam in Free Vibrations 202
Reference 205
Kirchhoff Plates 207
12.1 Introduction 207
12.2 Mathematical Background 208
12.3 Finite Element Approximation 209
12.3.1 Interpolation Functions 209

1232 Stiffness Matrix 212

12.4 Isotropic Square Plate in Bending 215
12.5 Orthotropic Square Plate in Bending 226
References 227
Mindlin Plates. 229
13.1 Introductiont 229
13.2 The Mindlin Plate Theory 229
13.2.1 Displacement Field 229

1322 Strains 230

13.2.3 SHESSES . . v 231

13.2.4 Hamilton’s Principle 232

13.3 Finite Element Discretization 233
134 Stress Recovery 235
13.5 Square Mindlin Plate in Bending 235
13.6 Free Vibrations of Mindlin Plates. 244
13.7 Stability of Mindlin Plates 253
References 267
Laminated Plates 269
14.1 Introduction 269
14.2 Displacement Field 269
143 Strains 270
144 Stresses . .. ov i 271
14.5 Hamilton’s Principle 273
14.6 Finite Element Approximation 275
14.6.1 Strain-Displacement Matrices 276

14.6.2 Stiffness Matrix 277

1463 Load Vector. 278

1464 Mass Matrix 278

147 Stress Recovery 278
14.8 Static AnalySiS 279

149 Free Vibrations 293

Contents XV

15

16

14.10 Buckling Analysis. 300

14.10.1 Buckling of Cross- and Angle-Ply Laminates 305
References 310
Functionally Graded Structures 313
15.1 Introduction 313
15.2 Functionally Graded Materials 313
153 Timoshenko Beam 314

15.3.1 Finite Element Approximation................. 317

15.3.2 Bending of Micro-Beams 318

15.3.3 Free Vibrations of Micro-Beams 322
154 Mindlin Plate 325

15.4.1 Bending of Micro-Plates 327

15.4.2 Free Vibrations of Micro-Plates 331
References 334
Time Transient Analysis 335
16.1 Introduction 335
16.2 Numerical Time Integration 335
16.3 Clamped Timoshenko Beam 337
16.4 Simply-Supported Laminated Plate. 340
References 345

Chapter 1 ®)
Short Introduction to MATLAB Geda

Abstract This chapter introduces MATLAB by presenting programs that investigate
elementary mathematical problems. The primarily objective is to learn quickly the
first steps. The emphasis here is “learning by doing”. Therefore, the best way to learn
is by trying it yourself. Working through the examples will give you a feel for the
way that MATLAB operates. In this introduction we will describe how MATLAB
handles simple numerical expressions and mathematical formulas.

1.1 Introduction

MATLAB is a commercial software and a trademark of The MathWorks, Inc., USA.
The name MATLAB stands for MATrix LABoratory. MATLAB was written origi-
nally to provide easy access to matrix software developed by the LINPACK (linear
system package) and EISPACK (Eigen system package) projects. It is an integrated
programming system, including graphical interfaces and a large number of special-
ized toolboxes. MATLAB is getting increasingly popular in all fields of science and
engineering due to its simple programming very close to linear algebra and powerful
and easy to use Integrated Development Environment (IDE).

MATLAB started as an interactive program for doing matrix calculations and
has now grown to a high level mathematical language that can solve integrals and
differential equations numerically and plot a wide variety of two and three dimen-
sional graphs. In this subject you will mostly use it interactively and also create
MATLAB scripts that carry out a sequence of commands. MATLAB also contains a
programming language that is rather like Pascal.

It is a high-performance language for technical computing. It integrates com-
putation, visualization, and programming environment. Furthermore, MATLAB is
a modern programming language environment: it has sophisticated data structures,
contains built-in editing and debugging tools, and supports object-oriented program-
ming. These factors make MATLAB an excellent tool for teaching and research.

MATLAB has many advantages compared to conventional computer languages
(e.g. C++, Fortran) for solving technical problems. MATLAB is an interactive sys-
tem whose basic data element is an array that does not require dimensioning. The

© The Editor(s) (if applicable) and The Author(s), under exclusive 1
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_1

2 1 Short Introduction to MATLAB

first version of MATLAB was produced in the mid 1970s as a teaching tool. The soft-
ware package has been commercially available since 1984 and is now considered as
a standard tool at most universities and industries worldwide.

A deeper study of MATLAB can be obtained from many MATLAB books [1, 2]
and the very useful help of MATLAB.

This chapter introduces MATLAB by presenting programs that investigate ele-
mentary, but interesting, mathematical problems. The primarily objective is to learn
quickly the first steps. The emphasis here is “learning by doing”. Therefore, the best
way to learn is by trying it yourself. Working through the examples will give you a
feel for the way that MATLAB operates. In this introduction we will describe how
MATLAB handles simple numerical expressions and mathematical formulas.

1.2 Getting Started

When you start MATLAB, a special window called the MATLAB desktop appears.
The desktop is a window that contains other windows. The major tools within or
accessible from the desktop are:

Command window
Command history
Current directory
Workspace

The command window is a white plain window in which it is possible to edit and
run commands in order to see directly the effects of MATLAB syntax. The command
history collects all the commands that have been inserted. The current directory is
the current working folder in which the program is working, this folder defines the
root folder of your project. The workspace collects all the variables (memory) that
are introduced. Note that while MATLAB is running is filling the workspace which
represents the RAM of the machine.

Simple example of interactive calculation is given just by typing the expression in
the command window. We want to calculate the expression, 5 + 3, thus, we type at
the prompt command (>>) and obtain immediately 8. You will have noticed that if
you do not specify an output variable, MATLAB uses a default variable ans, short
for answer, to store the results of the current calculation. Note that the variable ans is
created or overwritten, if it already exists and added to the workspace. To avoid this,
we may assign a value to a variable or output argument name x = 5 + 3. This
variable name can always be used to refer to the results of the previous computations.
Therefore, computing 4 *x results in ans = 32. If a complex operation has to be
computed, i.e. 5 + 4/3*2, MATLAB works according to the priorities:

e The contents of all parentheses are evaluated first, starting from the innermost
parentheses and working outward.
e All exponentials are evaluated, working from left to right.

1.2 Getting Started 3

e All multiplications and divisions are evaluated, working from left to right.
e All additions and subtractions are evaluated, starting from left to right.

Thus, the earlier calculation was for 5 + (4/3) *2 by priority 3.

Typing pi the number 7 = 3.141592... is shown in the command window.
If you type PI an error appears, due to the key-sensitive MATLAB property. It
is important to pay attention calling variables with capitals or lower-case letters.
MATLAB has also some built it functions, for example, typing exp (1) the natural
exponent appears e = 2.71828

The usage of comments is fundamental while a program is developed. Comments
are very useful also if you open a program that you made months before and do not
remember its structure and purpose. Comments in MATLAB are introduced with %
symbol at the beginning of a line. Moreover, a double symbol %% at a beginning of a
line defines a section which is highlighted by MATLAB editor and can help during
code debugging.

While the instructions are written can be useful to maintain code line alignments.
It is helpful because makes the program easy to read and also the searching for any
error. Every variable can be declared in every part of the program, it is not needed to
declare all the variables in the initialization part. Another very important thing about
MATLAB declaration is that each variable might not be declared compulsorily, this
makes MATLAB very practical and easy to use.

1.3 Matrices

Matrices are the fundamental object of MATLAB and are particularly important in
this book. Matrices can be created in MATLAB in many ways, the simplest one
obtained by the commands

>> A=[1 2 3;4 5 6;7 8 9]

A =
1 2 3
4 5 6
7 8 9

Note the semi-colon at the end of each matrix line. We can also generate matrices
by pre-defined functions, such as random matrices

>> rand(3)

ans =
0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

Rectangular matrices can be obtained by specification of the number of rows and
columns, as in

4 1 Short Introduction to MATLAB

>> rand (2, 3)

ans =
0.9649 0.9706 0.4854
0.1576 0.9572 0.8003

1.3.1 Operating with Matrices

We can add, subtract, multiply, and transpose matrices. For example, we can obtain
a matrix c=a+Db, by the following commands

>> a=rand(4)

a:
0.2769 0.6948 0.4387 0.1869
0.0462 0.3171 0.3816 0.4898
0.0971 0.9502 0.7655 0.4456
0.8235 0.0344 0.7952 0.6463

>> b=rand(4)

b =
0.7094 0.6551 0.9597 0.7513
0.7547 0.1626 0.3404 0.2551
0.2760 0.1190 0.5853 0.5060
0.6797 0.4984 0.2238 0.6991

>> c=a+b

C:
0.9863 1.3499 1.3985 0.9381
0.8009 0.4797 0.7219 0.7449
0.3732 1.0692 1.3508 0.9515
1.5032 0.5328 1.0190 1.3454

The matrices can be multiplied, for example e=a*d, as shown in the following
example

>> d=rand(4,1)

d =
0.8909
0.9593
0.5472
0.1386

>> e=a*d

e =
1.1792
0.6220
1.4787
1.2914

1.3 Matrices 5

The transpose of a matrix is given by the apostrophe, as

>> a=rand(3,2)

a =
0.1493 0.2543
0.2575 0.8143
0.8407 0.2435
>> a’
ans =
0.1493 0.2575 0.8407
0.2543 0.8143 0.2435

1.3.2 Statements

Statements are operators, functions and variables, always producing a matrix which
can be used later. Some examples of statements:

>> a=3

a =
3

>> b=a*3

b =
9

>> eye(3)

ans =
1 0 0
0 1 0
0 0 1

If one wants to cancel the echo of the input, a semi-colon at the end of the statement
suffices.

It is recalled that MATLAB is case-sensitive, variables a and A being different
objects.

We can erase variables from the workspace by using clear. A given object can be
erased, such as clear A.

1.3.3 Matrix Functions

Some useful matrix functions are given in Table 1.1.
Some examples of such functions are given in the following commands (here we
build matrices by blocks)

6 1 Short Introduction to MATLAB

Table 1.1 Some useful functions for matrices

eye Identity matrix

Zeros A matrix of zeros

ones A matrix of ones

diag Creates or extract diagonals
rand Random matrix

ans =
1.0000 0 0 1.0000 0.8147 0.9134
0 1.0000 0 1.0000 0.9058 0.6324
0 0 1.0000 1.0000 0.1270 0.0975

Another example of matrices built from blocks:

>> A=rand(3)

A =
0.5497 0.7572 0.5678
0.9172 0.7537 0.0759
0.2858 0.3804 0.0540
>> B = [A, zeros(3,2); zeros(2,3), ones(2)]
B =
0.5497 0.7572 0.5678 0 0
0.9172 0.7537 0.0759 0 0
0.2858 0.3804 0.0540 0 0
0 0 0 1.0000 1.0000
0 0 0 1.0000 1.0000

1.3.4 Inverse

Given a square matrix A the inverse matrix is given by inv (A). The main use of
matrices and vectors is in solving sets of linear equations. This kind of systems can be
implemented in MATLAB using their matrix form Ax = b. In order to solve these
systems the inverse matrix has to be used x = A~'b. MATLAB has an improved
algorithm (backslash) that compute this problem x = A\b, which works better
than x = inv(A) *b.

1.3.5 Component Operations

Sometimes it is useful to do some operation component by component between
vectors or scalars. To do so a dot must be added as a prefix of the operator. In order to

1.3 Matrices 7

do a generic exponent n of each component of a vector v1=[1 5 2] the command
window code for n = 3 should be v1. "3 and the command window output is

ans =
1 125 8

The dot symbol “.” underlines that the operation (in general a product *, a division
/ and an exponent ") should be done over each component of the vector/matrix.

1.3.6 Colon Notation and Submatrices

The colon : is a shortcut for calling back vectors and matrices components. For
example typingu = 0:3 it gives

u =
0 1 2 3

if the step is different from 1, it becomes v = 0:0.4:2. Generallya : b : ¢
produces a vector of entries starting with the value a, incrementing by the value b
until it gets to c (it will not produce a value beyond c). It should be noted that the
colon : substitutes the for loop (see loop section below). With the colon it is possible
to extract bits of a vector/matrix. Considering the following vector vl = [1:2:6,
0:-2:-6] which means

vl =
1 3 5 0 -2 -4 -6

To get from 2nd to 5th entries v1 (2:5)

ans =
3 5 0 -2

or to get alternate entries v1 (1:2:7) and get

ans =
1 5 -2 -6

In MATLAB it is possible to manipulate matrices in order to make code more
compact or more efficient. For example, using the colon we can generate vectors, as
in

>> x=1:8
X =
1 2 3 4 5 6 7 8

or using increments

>> x=1.2:0.5:3.7
X =
1.2000 1.7000 2.2000 2.7000 3.2000 3.7000

8 1 Short Introduction to MATLAB

This sort of vectorization programming is quite efficient, no for/end cycles are used.
This efficiency can be seen in the generation of a table of sines,

>> x=0:pi/2:2*pi

x =
0 1.5708 3.1416 4.7124 6.2832
>> b=sin(x)
b =
0 1.0000 0.0000 -1.0000 -0.0000
>> [x' b’]
ans =
0 0
1.5708 1.0000
3.1416 0.0000
4.7124 -1.0000
6.2832 -0.0000

The colon can also be used to access one or more elements from a matrix, where
each dimension is given a single index or vector of indices. A block is then extracted
from the matrix, as illustrated next.

>> a=rand(3,4)

a =
0.6551 0.4984 0.5853 0.2551
0.1626 0.9597 0.2238 0.5060
0.1190 0.3404 0.7513 0.6991
>> al(2,3)
ans =
0.2238
>> a(l:2,2:3)
ans =
0.4984 0.5853
0.9597 0.2238
>> a(l,end)
ans =
0.2551
>> a(l,:)
ans =
0.6551 0.4984 0.5853 0.2551
>> a(:,3)
ans =
0.5853
0.2238
0.7513

It is interesting to note that arrays are stored linearly in memory, from the first
dimension, second, and so on. So we can in fact access vectors by a single index, as
show below.

1.3 Matrices

>> a=[1 2 3;4 5 6; 9 8 7]

a =
1 2 3
4 5 6
9 8 7
>> a(3)
ans =
9
>> al(7)
ans =
3
>> a([l 2 3 47)
ans =
1 4 9 2
>> af:)
ans =
1
4
9
2
5
8
3
6
7

Subscript referencing can also be used in both sides.

>> a
a =
1 2 3
4 5 6
9 8 7
>> b
b =
1 2 3
4 5 6
>> b(l,:)=a(l,:)
b =
1 2 3
4 5 6
>> b(l,:)=a(2,:)
b =
4 5 6
4 5 6
>> b(:,2)=[]
b =
4 6

10 1 Short Introduction to MATLAB

>> a(3,:)=0
a =
1 2 3
4 5 6
0 0 0
>> b(3,1)=20
b =
4 6
4 6
20 0

We can insert one element in matrix b, and MATLAB automatically resizes the
matrix. Note that vector/matrix indexing in MATLAB starts from 1 and not from
0 (zero) as in other programming languages (e.g. Python, C, etc.) so if a vector is
generated as v=1: 6, its size is 6 as the last index used for the creation.

1.4 Loops and Repetitive Actions

Every programming language, MATLAB included, has at least three structures for
sequential, alternative and repetitive computing. These structures are fundamental
from basic to advanced programming. Conditionals and loops are the most common
and wide used structures for basic programming which are shown below.

1.4.1 Conditionals, if and Switch

Often a function needs to branch based on runtime conditions. MATLAB offers
structures for this as in most programming languages. Here is an example illustrating
most of the features of if.

x=-1
if x==0
disp(’Bad input!’)
elseif max(x) > 0
y = x+1;
else
y = x72;
end

If there are many options, it may better to use switch instead. For instance:

switch units
case ’'length’
disp(’'meters’)
case ’‘volume’

1.4 Loops and Repetitive Actions 11

disp(’cubic meters’)
case ’'time’
disp('hours’)
otherwise
disp(’'not interested’)
end

1.4.2 Loops: For and While

Many programs require iteration, or repetitive execution of a block of statements.
Again, MATLAB is similar to other languages here. This code for calculating the
first 10 Fibonacci numbers illustrates the most common type of for/end loop:

>> f=[1 2]
f =
1 2
>> for i=3:10;f(i)=£(i-1)+f(i-2) ;end;
>> f
f =
1 2 3 5 8 13 21 34 55 89

It is sometimes necessary to repeat statements based on a condition rather than a
fixed number of times. This is done with while.

>> x=10;while x > 1; x = x/2,end

X =
5

X =
2.5000

X =
1.2500

X =
0.6250

Other examples of for/end loops:

> x = []; for i = 1:4, x=[x,1"2], end
X =
1
X =
1 4
X =
1 4 9
X =
1 4 9 16

and in inverse form

12 1 Short Introduction to MATLAB

> x = []; for i = 4:-1:1, x=[x,1"2], end
X =
16
X =
16 9
x =
16 9 4
X =
16 9 4 1
Note the initial values of x = [] (as empty vector/matrix) and the possibility of

decreasing cycles.

1.4.3 Relations and Logical Operators

Relations in MATLAB are shown in Table 1.2.
Note the difference between “=" and logical equal “==". The logical operators
are given in Table 1.3. The result if either O or 1, as in

>> 3<5,3>5,3==5

ans =
1
ans =
0
ans =
0

The same is obtained for matrices, as in

>> a = rand(5), b = triu(a), a == b
a =

Table 1.2 Some relation operators

< Less than

> Greater than

<= Less or equal than
>= Greater or equal than
== Equal to

~= Not equal

Table 1.3 Logical operators
& and

| or

~ not

1.4 Loops and Repetitive Actions

.1419
.4218
.9157
L7922
.9595

O O O O o
o O O o o

0.1419

o

0
0
0

ans =

o O o o
O O O B

1.4.4 Logical Indexing

.6557
.0357
.8491
.9340
.6787

.6557
0 0.

0357
0
0
0

cCoRr PR

oOrR R R

O O O oo

o o

L7577
L7431
.3922
.6555
L1712

L7577
L7431
.3922

e

O O O oo

o O O o

.7060
.0318
L2769
.0462
.0971

.7060
.0318
.2769
.0462

O O O oo

O O O oo

.8235
.6948
L3171
.9502
.0344

.8235
.6948
L3171
.9502
.0344

13

Logical indexing arise from logical relations, resulting in a logical array, with ele-

ments O or 1.
>> a
a =
1 2
4 5
0 0
>> a>2
ans =
0 0
1 1
0 0

[e))

[any

Then we can use such array as a mask to modify the original matrix, as shown next.

>> a(ans)=20
a =

1 2
20 20
0 0

20
20

0

This will be very useful in finite element calculations, particularly when imposing

boundary conditions.

14 1 Short Introduction to MATLAB

1.5 Library and User Defined Functions

MATLAB has a lot of built-in functions like sin (x), cos (x), abs (x), exp (xX),
etc. which can be applied to vectors and matrices. In addition, users can create their
own customized functions for several purposes like avoiding code repetitions and re-
use the same routines for different computer programs. The use and implementation
of user defined functions is highly recommended because it helps in reducing code
errors and code clarity.

1.5.1 Standard Library

The sine of a value is mathematically written as y = sin x, y is the sine of the generic
number x. Since MATLAB has only matrices and vectors the expression above
means: each component of vector x has a sine y following the relation y = sin x so

>> x = 0:pi/6:.5%pi;
>> vy = sin(x)

gives

y =

0 0.5000 0.8660 1.0000

A not complete list of functions are given in Table 1.4. Another example with
matrices is given below

>> a=rand (3, 4)

a:
0.4387 0.7952 0.4456 0.7547
0.3816 0.1869 0.6463 0.2760
0.7655 0.4898 0.7094 0.6797
>> b=sin(a)
b =
0.4248 0.7140 0.4310 0.6851
0.3724 0.1858 0.6022 0.2725
0.6929 0.4704 0.6514 0.6286
>> c=sqgrt (b)
c:
0.6518 0.8450 0.6565 0.8277
0.6102 0.4310 0.7760 0.5220

0.8324 0.6859 0.8071 0.7928

1.5 Library and User Defined Functions

Table 1.4 Scalar functions

15

sin asin exp abs round
cos acos log sqrt floor
tan atan rem sign ceil
Table 1.5 Vector functions

max sum median any

min prod mean all

1.5.2 Vector Functions

Some MATLAB functions operate well basically on vectors only. This definition is
not general because these functions work also with matrices but need more complex
definition. A not complete list is illustrated in Table 1.5.

Consider for example vector x=1:10. The sum, mean and maximum values are
evaluated as

>> x=1:10

55
>> mean (x)
ans =

5.5000
>> max (x)
ans =

10

1.5.3 Matrix Functions

Some important matrix functions which are used for matrix structured data are listed
in Table 1.6.
In some cases such functions may use more than one output argument, as in

>> A=rand(3)

A =
0.8147 0.9134 0.2785
0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

16 1 Short Introduction to MATLAB

Table 1.6 Matrix functions

eig Eigenvalues and eigenvectors
chol Cholesky factorization

inv Inverse

Iu LU decomposition

qr QR factorization

schur Schur decomposition

poly Characteristic polinomial

det Determinant

size Size of a matrix

norm 1-norm, 2-norm, F-norm, oco-norm
cond Conditioning number of 2-norm
rank Rank of a matrix

>> y=eig(A)
y =
-0.1879
1.7527
0.8399

where we wish to obtain the eigenvalues only, or in

>> [V,D]=eig(A)

v =
0.6752 -0.7134 -0.5420
-0.7375 -0.6727 -0.2587
-0.0120 -0.1964 0.7996

D =
-0.1879 0 0
0 1.7527 0
0 0 0.8399

where we obtain the eigenvectors and the eigenvalues of matrix A.

1.5.4 Scripting and User’s Defined Functions

A M-file is a plain text file with MATLAB comands, saved with extension .m. The
M-files can be scripts of functions. By using the editor of MATLAB we can insert
comments or statements and then save or compile the m-file. Note that the percent sign
% represents a comment. No statement after this sign will be executed. Comments
are quite useful for documenting the file.

M-files are useful when the number of statements is large, or when you want to
execute it at a later stage, or frequently, or even to run it in background.

1.5 Library and User Defined Functions 17

A simple example of a script is given below.

o

program 1

programmer: Antonio Ferreira

date: 2008.05.30

purpose : show how M-files are built

o° 0P oP

% data: a - matrix of numbers; b: matrix with sines of a

a=rand(3,4) ;
b=sin(a) ;

Users can create their own functions. Generally it is computationally convenient to
divide the whole program in sub-programs in which the code has different purposes.
This makes the code more readable afterwards. Functions act like subroutines in
FORTRAN where a particular set of tasks is performed. For example a rectangle
area calculus is shown. The input data are the 2 rectangle dimensions a, b and the
outputs are the area A, the perimeter p and the diagonal d. The first line we should
name the function and give the input parameters (a, b) in parenthesis and the output
parameters [A,p, d] in square parenthesis.

function [A,p,d] = rect(a,b)
A = a*b;
p = 2*(a + b);
d sgrt(a”2 + b"2);
end

The function has been defined with the sintax function [A,p,d] = rect
(a,b), where the input data are (a,b) written in round brackets and the output
data in square brackets [A, p, d]. Itis noted that MATLAB does not mix the letters
A and a up, because it is a key-sensitive code. This function must be saved with
the name rect.m and it can be recalled in other m-file or in the command window
directly

>> [area, perim, diag] = rect(2,3)
and it gives

ans =
6.0000 10.0000 3.6056

Another MATLAB function sample is given below

18 1 Short Introduction to MATLAB

function [a,b,c] = antonio(m,n,p)
a = hilb(m) ;

b= magic(n) ;

c= eye(m,p);

end

We then call this function as

>> [a,b,cl=antonio(2,3,4)

producing

>> [a,b,cl=antonio(2,3,4)

a =
1.0000 0.5000
0.5000 0.3333
b =
8 1 6
3 5 7
4 9 2
Cc =
1 0 0 0
0 1 0 0

It is possible to use only some output parameters by not typing the last symbols of
the function definition

>> [a,b]l=antonio(2,3,4)

a =
1.0000 0.5000
0.5000 0.3333
b =
8 1 6
3 5 7
4 9 2

or by removing some of them with ~ symbol as

» [a, ~,c]l=antonio(2,3,4)

a =
1.0000 0.5000
0.5000 0.3333

1.5 Library and User Defined Functions 19

1.5.5 Debug Mode

Most of the time we work on MATLAB scripts in the MATLAB editor. MATLAB
itself identifies possible code problems as warning or errors. However, MATLAB
has powerful debugging features that help us checking the code while it is running
line by line. Of all debugging tools the breakpoints are the most practical ones. Each
runnable line of a MATLAB script has an hyphen on the left side of the MATLAB
editor. It is sufficient to press on the hyphen to see a red dot. If the MATLAB script
is run the code will stop running at the specific line showing a green pointing arrow.
From now on it is possible to check workspace status, variable values and even
execute code line by line or continue the script run. It is suggested to the reader to
check MATLAB documentation for the latest debugging features and get familiar
with MATLAB debugger.

1.6 Linear Algebra

In our finite element calculations we typically need to solve systems of equations,

or obtain the eigenvalues of a matrix. MATLAB has a large number of functions for

linear algebra. Only the most relevant for finite element analysis are here presented.
Consider a linear system a*x=b, where

>> a=rand(3)
a =
0.8909 0.1386 0.8407
0.9593 0.1493 0.2543
0.5472 0.2575 0.8143
>> b=rand(3,1)
b =
0.2435
0.9293
0.3500

The solution vector x can be easily evaluated by using the backslash command,

>> x=a\b

X =
0.7837
2.9335
-1.0246

Consider two matrices (for example a stiffness matrix and a mass matrix), for which
we wish to calculate the generalized eigenproblem.

>> a=rand(4)
a:
0.1966 0.3517 0.9172 0.3804

20 1 Short Introduction to MATLAB

0.2511 0.8308 0.2858 0.5678
0.6160 0.5853 0.7572 0.0759
0.4733 0.5497 0.7537 0.0540
>> b=rand (4)
b =
0.5308 0.5688 0.1622 0.1656
0.7792 0.4694 0.7943 0.6020
0.9340 0.0119 0.3112 0.2630
0.1299 0.3371 0.5285 0.6541
>> [v,d]=eig(a,b)
v =
0.1886 -0.0955 1.0000 -0.9100
0.0180 1.0000 -0.5159 -0.4044
-1.0000 -0.2492 -0.2340 0.0394
0.9522 -0.8833 0.6731 -1.0000
d =
-4.8305 0 0 0
0 -0.6993 0 0
0 0 0.1822 0
0 0 0 0.7628

The MATLAB function eig can be applied to the generalized eigenproblem, pro-
ducing matrix v, each column containing an eigenvector, and matrix d, containing
the eigenvalues at its diagonal. If the matrices are the stiffness and the mass matrices
then the eigenvectors will be the modes of vibration and the eigenvalues will be the
square roots of the natural frequencies of the system.

1.7 Graphics

MATLAB allows to produce graphics in a simple way, either 2D or 3D plots. Basic
implemented graphical functions such as plot, plot3, surf and patch are shown
in the present section.

1.7.1 2D Linear Plots

Using the command plot we can produce simple 2D plots in a £igure, using two
vectors with x and y coordinates. A simple example

X = -2*pi:pi/100:2*pi; vy = sin(x); plot(x,vy)

producing the plot of Fig. 1.1.

We can insert a title, legend, modify axes etc, as shown in Table 1.7.

By using hold on we can produce several plots in the same figure. We can also
modify colors of curves or points, as in

1.7 Graphics 21

1 T T T

0.8f

0.6

0.4

0.2

-1 L I L
-8 6 -4 2

Fig. 1.1 Sample of 2D line plot of a sine

Table 1.7 Some graphics commands

Title Title

xlabel x-axis legend

ylabel y-axis legend
axis([Xmin»Xmax»Ymin»>Ymax) Sets limits to axis

axis auto Automatic limits

axis square Same scale for both axis
axis equal Same scale for both axis
axis off Removes scale

axis on Scales again

>> x=0:p1/100:2*%pi; yl=sin(x); y2=sin(2*x); y3=sin(4*x);
>> plot(x,yl, ' --',x,y2,":’,x,y3,'+")

producing the plot of Fig. 1.2.

1.7.2 3D Linear Plots

As for 2D plots, we can produce 3D plots with plot3 using x, y, and z vectors. For
example

22 1 Short Introduction to MATLAB

08F . . /" \ . iy
06F. [/ \ 1
04t : ; ; .

02/ . \ E E

Fig. 1.2 Sample of application of line colors and markers

x 10

Fig. 1.3 Sample of 3D linear plot

t=.01:.01:20*pi; x=cos(t); y=sin(t); z=t."3; plot3(x,vy,2z)

produces the plot illustrated in Fig. 1.3.

1.7 Graphics 23

Fig. 1.4 Sample of 3D surface plot

1.7.3 3D Surface Plots

A simple example of surface plot is given below

>> [x,y] = meshgrid(1:0.5:10,1:20);
>> z = sin(x/2) + cos(y/3);
>> gurf(x,v, z)

and the graphical result is depicted in Fig. 1.4.

1.7.4 Patch Plots

For creating mesh filled polygons where the filling represents a generic field such
as displacement or stress patch MATLAB command can be used. Create a single
polygon by specifying the (x, y) coordinates of each vertex. Then, add two more
polygons to the figure. Create a red square with vertices at (0, 0), (1, 0), (1, 1) and
(0, 1). Specify x as the x-coordinates of the vertices and y as the y-coordinates.
patch automatically connects the last (x, y) coordinate with the first (x, y) coor-
dinate.

>> x = [0.2 2.5 3.4 0];
>y = [0.1 0.5 2 1.5];
>> patch(x,y, 'red’)

24 1 Short Introduction to MATLAB

-

! ! ! !

0 1 2 3 4

0

Fig. 1.5 Specifying patch coordinates

Create two polygons by specifying x and y as two-column matrices. Each column
defines the coordinates for one of the polygons. patch adds the polygons to the current
axes without clearing the axes.

>> x2 = [2 5; 2 5; 7 7; 8 8];
>> y2 = [4 0; 8 2; 7 3; 4 01;
>> patch(x2,y2, 'green’)

graphical result is given in Fig. 1.5

Different polygon color faces can be set and in particular interpolated polygon
face colors can be created. Create two polygons and use a different color for each
polygon vertex. Use a colorbar to show how the colors map into the colormap.

Create the polygons using matrices x and y. Interpolate colors across polygon
faces by specifying a color at each polygon vertex, and use a colorbar to show how
the colors map into the colormap. Matrix ¢ must be a matrix of the same size as x
and y defining one color per vertex, and add a colorbar.

> x = [2 5; 2 5; 7; 8 8];

> v = [4 0; 8 2; 3; 4 0];

> ¢ = [0 0.5; 0.8 0.3; 0.8 0.2; 0.5 17];
>> figure; patch(x,y,c)

>> colorbar

7
7

result is plot in Fig. 1.6.

References 25

31
| ‘
1L
0 1 1
4 5 6 7 8

2 3

Fig. 1.6 Different polygon color faces

References

1. B. Hahn, D.T. Valentine, Essential MATLAB for Engineers and Scientists, 6th edn. (Academic
Press, Cambridge, MA, USA, 2016)

2. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving
(Butterworth-Heinemann, Oxford, UK, 2018)

Chapter 2 ®)
Discrete Systems oo

Abstract In this chapter some basic concepts of the finite element method are illus-
trated by solving basic discrete systems built from springs and bars. Generation of
element stiffness matrix and assembly for the global system is performed. First basic
steps on finite element programs are described.

2.1 Introduction

The finite element method is nowadays the most used computational tool, in science
and engineering applications. The finite element method had its origin around 1950,
with reference works of Courant [1], Argyris [2] and Clough [3].

Many finite element books are available, such as the books by Reddy [4], Onate
[5], Zienkiewicz [6], Hughes [7], Hinton [8], just to name a few. Some recent books
deal with the finite element analysis with MATLAB codes [9, 10]. The programming
approach in these books is quite different from the one presented in this book.

In this chapter some basic concepts are illustrated by solving discrete systems
built from springs and bars.

2.2 Springs and Bars

Consider a bar (or spring) element with 2 nodes, 2 degrees of freedom, corresponding
to 2 axial displacements uge), ug”), where the superscript ©) refers to a generic finite
element, as illustrated in Fig. 2.1. We suppose an element of length L, constant cross-
section with area A, and modulus of elasticity E. The element supports axial forces
only.

The deformation in the bar is obtained as

() (e)
Uy — U
€= 1© 2.1
© The Editor(s) (if applicable) and The Author(s), under exclusive 27

license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,
Solid Mechanics and Its Applications 157,
https://doi.org/10.1007/978-3-030-47952-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_2

28 2 Discrete Systems

Fig. 2.1 Spring or bar finite 1 (e) 9 @
element with 2 nodes o o 2
Rge) Ré e)
| L |

while the stress in the bar is given by the Hooke’s law as

() ()
o=EWe=pg0%2 1

10 (2.2)

The axial resultant force is obtained by integration of stresses on the cross-section
area of the bar as

© _ (@

N =A€Ws = A©(E@e) = (EA)© 211 L(e)ul 2.3)

Taking into account the static equilibrium of the axial forces Rie) and Ry according
to Fig.2.1 such nodal forces can be expressed as

e e EA (6) e e
R§>=_R§>=N=(T) WS —u'?) (2.4)

we can write the equations in the form (taking k@ = £4)

Ry 1 =17 ful?
(e) — 1 = k@ 1 — K@q® 25
e A R >

where K(© is the stiffness matrix of the bar (spring) element, a(is the displacement
vector, and q(“) represents the vector of nodal forces. In case a bar element is con-
sidered, the element might undergo the action of uniformly distributed forces, thus
it is necessary to transform those forces into nodal forces, by

1 =17 [u?] @)@ [1
(e) _ r.(e) 1 _ —_K@gle) _ gle)
qQ“ =k |:_1 | :Hu(;)} > | =K%a f (2.6)

with £©) being the vector of nodal forces equivalent to distributed forces b. More
details regarding this aspect will be given in the following chapter.

2.3 Equilibrium at Nodes 29

2.3 Equilibrium at Nodes

In Eq. (2.6) we show the equilibrium relation for one element, but we also need to
obtain the equations of equilibrium for the structure. Therefore, we need to assemble
the contribution of all elements so that a global system of equations can be obtained.
To do that we recall that in each node j the sum of all forces arising from various
adjacent elements equals the applied load at that node ;.

We then obtain

ne

Y RV = (2.7)
e=1

where n, represents the number of elements in the structure, producing a global
system of equations in the form

K1 Kip -+ Ky uj fi
Ko Ko -+ Koy uy f2
Knl KnZ ot Knn U fn

or in a more compact form

Ka=f 2.8)

Here K represents the system (or structure) stiffness matrix, a is the system displace-
ment vector, and f represents the system force vector.

2.4 Some Basic Steps

In any finite element problem, some calculation steps are typical:

define a set of elements connected at nodes

for each element, compute stiffness matrix K, and force vector £(©

assemble the contribution of all elements into the global system Ka = f

modify the global system by imposing essential (displacements) boundary condi-
tions

solve the global system and obtain the global displacements a

e for each element, evaluate the strains and stresses (post-processing).

30 2 Discrete Systems

2.5 First Problem and First MATLAB Code

To illustrate some of the basic concepts, and introduce the first MATLAB code, we
consider a problem, illustrated in Fig. 2.2 where the central bar is defined as rigid.
Our problem has 3 finite elements and 4 nodes. Three nodes are clamped, being the
boundary conditions defined as u; = u3 = uy4 = 0. In order to solve this problem,
we set k = 1 for all springs and the external applied load at node 2 to be P = 10.
We can write, for each element in turn, the (local) equilibrium equation
Spring 1:

A AROIES
R, | -1 1] u,
Spring 2:
Rg o 1 -1 {”Ez
R2 _—l 1 1 lu,
Spring 3:
3 r T 3
Risz = 1] {uéi
R2 _—1 1 1 lu,

We then consider the compatibility conditions to relate local (element) and global
(structure) displacements as
1 1 2 2 3 3
ug)zul; ué) = uy; uﬁ)zuz; ug) = u3; ug)zuz; u(z) = Uy (2.9

By expressing equilibrium of forces at nodes 1 to 4, we can write

3
Node I: Y "R = F; & R} = Fy (2.10)

(=)
2 S -
N\

Fig. 2.2 Problem 1: a spring problem

.

U =uz =uqg =0

gZ4

2.5 First Problem and First MATLAB Code 31

3

Node2:» RY =P & R + R + R =P 2.11)
e=1
3
Node3: Y "R = F; & RY = F; (2.12)
e=1
3
Node4:Y "RY =F, & R’ = F, (2.13)
e=1

and then obtain the static global equilibrium equations in the form

K k1 —kl 0 0] ui F1

—ky ki + ko + k3 —ky —k3 u | _) P
0 —k k0 |Jus[T|F @.14)

L 0 —k3 0 k3 B Uy F4

Taking into account the boundary conditions u; = u3 = uy = 0, we may write

Mk —k; 0 O 0 F,
—ki ki + ko + k3 —ky —k3 u, | _) P
0 -k Kk 0 o[~ F (2.13)
0 -k 0 Kk ||oO Fy

At this stage, we can compute the reactions Fi, F3, Fy, only after the computation
of the global displacements. We can remove lines and columns of the system, corre-
sponding to u; = u3 = us = 0, and reduce the global system to one equation

(k1 + ko + k3)ur = P
The reactions can then be obtained by
—kiuy = Fi; —kyus = F3; —ksus = Fy
Note that the stiffness matrix was obtained by “summing” the contributions of each
element at the correct lines and columns corresponding to each element degrees of
freedom. For instance, the degrees of freedom of element 1 are 1 and 2, and the 2 x 2

stiffness matrix of this element is placed at the corresponding lines and columns of
the global stiffness matrix.

ki —k; 00
—ki ki 00
KD — 01 01 00 (2.16)

0 0 00

32 2 Discrete Systems

For element 2, the (global) degrees of freedom are 2 and 3 and the 2 x 2 stiffness
matrix of this element is placed at the corresponding lines and columns of the global
stiffness matrix.

00 00
0 ky —k 0

2) 2 2

KO =10 oo 2.17)
00 00

For element 3, the (global) degrees of freedom are 2 and 4 and the 2 x 2 stiffness
matrix of this element is placed at the corresponding lines and columns of the global
stiffness matrix.

0000
0 k3 0—k

K® — 0 03 0 03 (2.18)
0 —k3 0 k3

A first MATLAB code problem1.m is introduced to solve the problem illustrated
in Fig.2.2. Many of the concepts used later on more complex elements are already
given in this code.

% MATLAB codes for Finite Element Analysis
$ probleml.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear

% elementNodes: connections at elements
elementNodes = [1 2;2 3;2 4];

% numberElements: number of Elements
numberElements = size(elementNodes,1) ;

% numberNodes: number of nodes
numberNodes = 4;

% for structure:

% displacements: displacement vector
% force: force vector

% stiffness: stiffness matrix
displacements = zeros (numberNodes, 1) ;
force = zeros (numberNodes, 1) ;
stiffness = zeros (numberNodes) ;

% applied load at node 2
force(2) = 10.0;

2.5 First Problem and First MATLAB Code 33

% computation of the system stiffness matrix
for e = l:numberElements
% elementDof: element degrees of freedom (Dof)
elementDof = elementNodes (e, :) ;
stiffness (elementDof, elementDof) = ...
stiffness (elementDof, elementDof) + [1 -1;-1 1];
end

% boundary conditions and solution

% prescribed dofs

prescribedDof = [1;3;4];

% free Dof: activeDof

activeDof = setdiff ((1:numberNodes) ’,prescribedDof) ;

% solution
displacements (activeDof) = ...
stiffness (activeDof,activeDof) \force (activeDof) ;

% output displacements/reactions
outputDisplacementsReactions (displacements, stiffness, ...
numberNodes, prescribedDof)

We discuss some of the programming steps. The workspace is deleted by
clear

In matrix elementNodes we define the connections (left and right nodes) at each
element,

elementNodes = [1 2;2 3;2 4];

In the first line of this matrix we place 1 and 2 corresponding to nodes 1 and 2, and
proceed to the other lines in a similar way. By using the MATLAB function size,
that returns the number of lines and columns of a rectangular matrix, we can detect the
number of elements by inspecting the number of lines of matrix elementNodes.

numberElements = size(elementNodes, 1) ;
Note that in this problem, the number of nodes is 4,
numberNodes = 4;

In this problem, the number of nodes is the same as the number of degrees of freedom
(which is not the case in many other examples). Because the stiffness matrix is the
result of an assembly process, involving summing of contributions, it is important
to initialize it. It is also a good programming practice in MATLAB to increase the
speed of for loops.

Using MATLAB function zeros we initialize the global displacement vector dis-
placements, the global force vector force and the global stiffness matrix stiffness,
respectively.

34 2 Discrete Systems

displacements = zeros (numberNodes, 1) ;
force = zeros (numberNodes, 1) ;
stiffness = zeros (numberNodes) ;

It is remarked that the initiation of the displacements vector is optional in the
present problem because the same vector is carried out from MATLAB computation
at the solution section of the code.

We now place the applied force at the corresponding degree of freedom:

force(2) = 10.0;

We compute now the stiffness matrix for each element in turn and then assemble it
in the global stiffness matrix.

for e = 1l:numberElements
% elementDof: element degrees of freedom (Dof)
elementDof = elementNodes (e, :);
stiffness(elementDof, elementDof) =
stiffness(elementDof,elementDof) + [1 -1;-1 1];

end

In the first line of the loop, we inspect the degrees of freedom at each element, in a
vector elementDof. For example, for element 1, elementDof = [1,2], for
element 2 , elementDof = [2 3] and so on.

elementDof = elementNodes (e, :) ;

Next we state that the stiffness matrix for each element is constant and then we
perform the assembly process by “spreading” this 2 x 2 matrix at the corresponding
lines and columns defined by elementDof,

stiffness(elementDof, elementDof) =
stiffness (elementDof, elementDof) + [1 -1;-1 1];

Theline stiffness (elementDof, elementDof) + [1 -1;-1 1]; ofthecodecan
be interpreted as

stiffness([1 21,[1 21)

stiffness([1 2],[1 2]) + [1 -1;-1 1];

for element 1,

stiffness([2 31,[2 31) stiffness([2 31,[2 31) + [1 -1;-1 171;
for element 2, and

stiffness([2 4]1,[2 4]) = stiffness([2 4],[2 4]) + [1 -1;-1 11;

2.5 First Problem and First MATLAB Code 35

for element 3. This sort of coding allows a quick and compact assembly.

This global system of equations cannot be solved at this stage. We need to impose
essential boundary conditions before solving the system Ka = f. The lines and
columns of the prescribed degrees of freedom, as well as the lines of the force
vector will be eliminated at this stage.

First we define vector prescribedDof, corresponding to the prescribed degrees
of freedom. Then we define a vector containing all activeDof degrees of freedom,
by setting up the difference between all degrees of freedom and the prescribed ones.
The MATLAB function setdiff allows this operation.

% prescribed dofs

prescribedDof = [1;3;4];

% free Dof : activeDof

activeDof = setdiff ([1l:numberNodes]’, [prescribedDof]);

Note that the solution is performed with the active lines and columns only, by using
a mask.

displacements (activeDof) =
stiffness (activeDof,activeDof) \force (activeDof) ;

We then call function outputDisplacementsReactions.m, to output displacements
and reactions, as

function outputDisplacementsReactions. ..
(displacements, stiffness, GDof, prescribedDof)
% output of displacements and reactions in tabular form

% GDof: total number of degrees of freedom of the problem

% displacements
disp(’'Displacements’)
jj = 1:GDof; format
[’ displacements]

% reactions

F = stiffness*displacements;
reactions = F (prescribedDof) ;
disp(’reactions’)
[prescribedDof reactions]

end

Reactions are computed by evaluating the total force vector as f = Ka. Because
we only need reactions (forces at prescribed degrees of freedom), we then use

% reactions
F = stiffness*displacements;
reactions = F(prescribedDof) ;

36 2 Discrete Systems

When running this code we obtain detailed information on matrices or results,
depending on the user needs, for example displacements and reactions:

Displacements

ans =
1.0000 0
2.0000 3.3333
3.0000 0
4.0000 0

reactions

ans =

1.0000 -3.3333
3.0000 -3.3333
4.0000 -3.3333

References

1. R. Courant, Variational methods for the solution of problems of equilibrium and vibration.
Bull. Am. Math. Soc. 49, 1-23 (1943)

2. J.H. Argyris, Matrix displacement analysis of anisotropic shells by triangular elements. J. Roy.
Aero. Soc. 69, 801-805 (1965)

3. R.W. Clough, The finite element method in plane stress analysis. inProceedings of 2nd A.S.C.E.
Conference in Electronic Computation (Pittsburgh, PA, 1960

4. J.N.Reddy, An Introduction to the Finite Element Method (McGraw-Hill International Editions,
New York, 1993)

5. E.Onate, Calculo de estruturas por el metodo de elementos finitos (CIMNE, Barcelona, 1995)

6. O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, 1991)

7. T.J.R.Hughes, The Finite Element Method-Linear Static and Dynamic Finite Element Analysis
(Dover Publications, New York, 2000)

8. E. Hinton, Numerical Methods and Software for Dynamic Analysis of Plates and Shells (Piner-
idge Press, 1988)

9. W. Young, Kwon and Hyochoong Bang Finite Element Method Using MATLAB (CRC Press
Inc, Boca Raton, FL, USA, 1996)

10. PI. Kattan, MATLAB Guide to Finite Elements, An Interactive Approach, 2nd edn. (Springer,

2007)

Chapter 3 ®)
Bars or Trusses Becit

Abstract In this chapter, we analyze axially loaded structural elements termed bars
or trusses. A truss is connected to other elements only through pins which are con-
nections that do not constrain rotations. Trusses are modeled as discrete elements (or
springs) because only axial force (traction or compression) and elongation is evalu-
ated. In the present chapter, an isoparametric finite element formulation is considered
for the bar/truss problem.

3.1 Introduction

In this chapter, we analyze axially loaded structural elements termed bars or trusses.
A truss is connected to other elements only through pins which are connections that
do not constrain rotations. Trusses are modeled as discrete elements (or springs)
because only axial force (traction or compression) and elongation is evaluated. In
general, a finite element is formulated in a reference (or parent domain) thus a
coordinate transformation is accomplished that regards both geometry and dependent
variable(s). Interpolation functions are used for both transformations (known also as
mapping). According to the degree of approximation of both geometry and dependent
variables finite element formulation are classified as

1. Superparametric: the approximation used for the geometry is higher order than
that used for the dependent variable.

2. Isoparametric: equal degree of approximation is used for both geometry and
dependent variables.

3. Subparametric: the approximation used for the geometry is lower order than that
used for the dependent variable.

In the present chapter, an isoparametric finite element formulation is considered for
the bar/truss problem.

© The Editor(s) (if applicable) and The Author(s), under exclusive 37
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_3

38 3 Bars or Trusses

3.2 A Bar Element

Consider the two-node bar finite element shown in Fig.3.1, with constant cross-
section (area A) and length L = 2a. The bar element can undergo only axial stresses
oy, which are uniform in every cross-section.

The equilibrium of the bar can be expressed according to the Hamilton’s Principle
[1] as

5]
f 0K — (60U —oW) dt =0 3.1
31

where 0 represents the variation, K is the kinetic energy, U the internal (strain)
energy and W the external work due to applied loads. Itisrecalled that [T = U — W
represents the total potential energy of the system.

The kinetic energy can be expressed as

1 ou\? pA [[(Ou 2
k=1 u N e 2
o) =2 [(5) o 2

where V indicates the volume of the bar and p its density. By evaluating the variation
of the kinetic energy and by integrating by parts the following expression is carried
out

“ 9 u

0K = —pA g W(SM dx (3.3)

The internal work done (or strain energy stored) by the bar element is

1 VO
U=—=|] o6,dV =— Oy€x dx (3.4)
2 Jy 2 J_,
Strain-displacement relation is
Ou 35)
€x = — .
T ox
By assuming a linear elastic behaviour of the bar material, we can write
Fig. 3.1 A bar element in its u, T
local coordinate system —
dx
1 p(z)
= —a =a

o
— 8 O

3.2 A Bar Element

39

Ou
oy =Fe, = E—

3.6
EP (3.6)
where E is the modulus of elasticity.

g EA [ou 2d -
2) \ox * '

the variation of the internal energy is derived as

¢ Ou du
—EA[| —Z2 .
oU o5 ox dx (3.8)

If we consider p as the applied forces by unit length, the virtual external work at
each element is

a

p ou dx (3.9)
Finally the equilibrium of the bar is given by

a 92 a 5 a
pA/ %514 dx+EA/ 8—Ma—udx—/ poudx =0 (3.10)
—da X a

which is called also weak or variational form of the bar problem.

oW =

Let’s consider now a two-noded finite element, as illustrated in Fig. 3.2. The axial
displacements can be interpolated as

u= N u; + N(u,

(3.11)
where the shape functions are defined as

1 1
Ni(§) = 3 1=8; N = 5 d + &) (3.12)

in the natural coordinate system £ € [—1, +1]. The interpolation (3.11) can be
defined in matrix form as

Fig. 3.2 A two-node bar

element T = —a T =a
1 2 & x
O]

40 3 Bars or Trusses
u e
u=[Ni No] [uj =Nu (3.13)

The element strain energy can be carried out in the natural system after coordinate
transformation x = a& (dx = adf) as

dNT dN
§U =6u"EA f —godx (3.14)
d dd 1d
by recalling that — = ——5 = —— and dx = adf as
dx d¢dx adg

11 dNT aN EA [!
U = §ugTEA/ ———adfu’ = 5ueT—/ N Ndcw (3.15)
—1 a -1

d
where N = —, and

de¢’
SU = su’"Keu® (3.16)

The element stiffness matrix, K¢, is given by

EA
K= —— N’Tng (3.17)

a

The integral is evaluated in the natural system by considering the stretch formulation
x = a& which is equivalent to a geometric transformation mapping. Classically, the
Jacobian matrix is introduced for such transformation, which in the present problem
is |J]| = Z—’E‘ = a. For 1D problems, the procedure can be done without introduc-
ing formally the Jacobian. However, many books and references use formally this
notation while evaluating the integrals for finite element analysis [1].

In this element the derivatives of the shape functions are

dN 1 dN 1
S (3.18)
d§ 2 d§ 2
In this case, the stiffness matrix can be given in explicit form as
=1
EA 2 EA[1 -1
K= — 1 Nge=—"— 3.19
a 1 1 [2 2] 6 2a -1 1 ()
2

By using L = 2a we obtain the same stiffness matrix as in the direct method presented
in the previous chapter.
The virtual work done by the external forces is defined as

3.2 A Bar Element 41

Fig. 3.3 Bar discretized into 1
4 elements o

Nodes

QN
QW
Qi
l.X3%

Elements

a 1 1
OWe = / poudx = / p ouadé = 5u8Ta/ pNTd¢ (3.20)
—1 —1

—a

or
SWe = su‘T£¢ (3.21)

where the vector of nodal forces that are equivalent to distributed forces is given
(only if the distributed forces are uniformly distributed) by

1 Iy
£ :aL PNTde = %L |:}+§i|d§:ap m (3.22)

The bar mass matrix is derived from the variation of the kinetic energy as

a 1
M¢ = pA / N'Ndx = pA / N”Na d¢ (3.23)

—a 1

by including the shape function vector definition the so-called consistent mass matrix
takes the form

e PA['1—¢ _pA 21
M = I[HJU—{ 1+§]ad£_Ta|:12] (3.24)

It is possible to avoid the integration for the mass matrix by considering the lumped
mass matrix as

. 10
M’ = pAa [0 1} (3.25)

which is the bar total mass divided by 2 (as 2 node element has been considered).

For a system of bars, the contribution of each element must be assembled. For
example in the bar of Fig. 3.3, we consider 5 nodes and 4 elements. In this case the
structure vector of displacements is given by

uT:[m Up U3 Ug us] (3.26)

42 3 Bars or Trusses

Summing the contribution of all elements, we obtain the strain energy, the energy
done by the external forces and the kinetic energy as

4
U =6u”) K‘u=éu’Ku (327)
e=1
4
SW = su” fo = su’f (3.28)
e=1
4
K = éu” ZMeii = su’ Mii (3.29)

e=1

where K, M and f are the structure stiffness matrix, mass matrix and the force vector,
respectively.
The stiffness matrix is then assembled as

1 =10007 [00 000 1 =10 0 0
ga|[-1 1000 o1 100 eal-12-100
K=-21l0o 0oo0o00|+|o=1100|+--t=22010_-12-10
L 0 0000/ |00 000 Lto o -12 -1
0 0000/ |00 000 00 0—11
element 1 element 2
(3.30)

whereas the vector of equivalent forces is given by

(3.31)

-
Il
Q
S

— NN~

similar assembly procedure follows for the mass matrix also. We then obtain a global
system of equations as

Mii + Ku = f (3.32)

to be solved after the imposition of the boundary conditions as explained before.

The algebraic problem (3.32) can be used to consider the static problem, when
M = 0; or the free vibrations problem, when f = 0; or time-history analysis via
Newmark’s method. In order to carry out the free vibration problem the solution has
to be sought in the form u = Gie’*”’, thus the final algebraic problem becomes

3.2 A Bar Element 43
(K—w’M)a=0 (3.33)

where {i represent the eigenvector and w? the eigenvalue.
In the present text only static and free vibration problem is considered in the
following.

3.3 Post-computation of Stress

The stress in the generic element is defined by Eq.(3.6). By including the finite
element approximation and using the coordinate transformation it leads

dN E dN E

0x=E€x =Eau€=;d—£ue=z(u§—uf) (334)

where u; and u, are the nodal displacements of the generic element.
Note that using linear interpolation the stress at the element is constant.

3.4 Numerical Integration

The integrals arising from the variational formulation can be solved by numeri-
cal integration, for example by Gauss quadrature. In this section we present the
Gauss method for the solution of one dimensional integrals. We consider a function
f(x), x € [—1, 1]. In the Gauss method, the integral

1
I = f f(x)dx (3.35)
-1

is replaced by a sum of p Gauss points, in which the function at those points is
multiplied by some weights, as in

1 p
I = dx = D W; 3.36
f_l f(x)dx ;f(X) (3.36)

where W; is the ith point weight. In Table 3.1 the coordinates and weights of the Gauss
technique are presented. This technique is exact whenever f(x) is a polynomial of
degree p by employing %(p + 1) integration points [2]. When p + 1 is odd the
nearest larger integer should be selected. For quadratic functions f(x) (p = 2), two
integration points represent exact integration over the element. For linear (p = 1) or
constant (p = 0) functions f (x), one integration point is exact, such integration is
called reduced integration (with respect to the two-points integration).

44 3 Bars or Trusses

Table 3.1 Coordinates and weights for Gauss integration

n Xi Wl‘

1 0.0 2.0

2 +0.5773502692 1.0

3 +0.7745966692 0.5555555556
0.0 0.8888888889

4 +0.8611363116 0.3478548451
40.3399810436 0.6521451549

Fig. 3.4 One dimensional 1 2 I3
Gauss quadrature for two o = = o
i ; i _ 1 _ 1
and one integration points & = -2 &y = I5
1 2 ¢
o = 0
§1=0

In the present case linear interpolation functions are considered, thus, the integrand
of K¢ (3.19) is constant, requiring only one-point quadrature, whereas the integrand
of M¢ (3.24) is quadratic, requiring two-points quadrature. The integral of f¢ (3.22)
is evaluated exactly by only one-point integration because the integrand function is
linear. In Fig. 3.4 point location for Gauss integration are illustrated.

3.5 Isoparametric Bar Under Uniform Load

MATLAB code problem2.m solves the bar problem illustrated in Fig. 3.5, in which
the modulus of elasticity is E = 30 - 10, and the area of the cross-sectionis A = 1.
The bar is subjected to a uniform (constant) axial load p = 50. Isoparametric element
means that the unknown field (# in this case) is approximated with the same shape
functions used for approximating the geometry of the finite element. This concept
will be more clear later when two-dimensional structures are presented.

Fig. 3.5 Clamped bar p =50

subjected to distributed load e e e e e R

p, problem2.m) 2: 3: 4§
ORERORENO)

3.5 Isoparametric Bar Under Uniform Load 45

The present problem has exact solution (in terms of displacements and stresses)
as

_ pLx (1
‘T 2EA

(3.37)

The code problem2.m solves the present problem.

3 Bars or Trusses

3.5 Isoparametric Bar Under Uniform Load 47

plot (axesl,XX,p*L*XX/2/EA.* (1 - XX/L),’'--b’,’linewidth’,1.5)

% stress at the element
sigma = E/11 * ones(l,interpNodes) *
(displacements (nodeB) - displacements (noded)) ;

plot (axes2,XX,sigma, '-k’, 'linewidth’,1.5)

plot (axes2,XX,p*L/A* (0.5 - XX/L),’'--b’,’linewidth’,1.5)
end
set (axesl, 'fontsize’,18); set(axes2,’'fontsize’,18);
xlim(axesl, [0 L]); xlim(axes2, [0 L])

The nodal coordinates are obtained by an equal-spaced division of the domain, using
linspace.

% generation of coordinates and connectivities
% numberElements: number of elements

numberElements = 3;
% generation equal spaced coordinates
nodeCoordinates = linspace(0,L,numberElements+1) ;

The connectivities are obtained by a vectorized cycle

% elementNodes: connections at elements

ii = 1l:numberElements;
elementNodes (:,1) = ii;
elementNodes (:,2) = ii+1;

The evaluation of the stiffness matrix involves the integral (3.19). We use a Gauss
quadrature with one central point £ = 0 and weight 2 (see Table 3.1) thus the inte-
gration of the stiffness matrix (described by constant functions) is computed exactly.
So the stiffness matrix and its global assembly becomes

stiffness (elementDof, elementDof) =
stiffness(elementDof, elementDof) + B’*B*2*detJacobian*EA;

where B is a matrix with the derivatives of the shape functions

% B matrix
B = zeros(l,nn); B(l:nn) = Xderivatives(:);

The shape functions and their derivatives with respect to natural coordinates are
computed in function shapeFunctionL2.m

function [shape,naturalDerivatives] = shapeFunctionL2 (xi)
% shape function and derivatives for L2 elements

% shape: Shape functions

% naturalDerivatives: derivatives w.r.t. xi

% xi: natural coordinates (-1 ... +1)

%%
shape = ([1-xi,1+x1]1/2)"’;

48 3 Bars or Trusses

naturalDerivatives = [-1;1]/2;

end % end function shapeFunctionL?2

The function (solution.m) will be used in the remaining of the book. This function
computes the displacements of any FE system in the forthcoming problems.

function displacements=solution (GDof,prescribedDof, stiffness, force)
function to find solution in terms of global displacements

GDof: number of degree of freedom

prescribedDof: bounded boundary dofs

stiffness: stiffness matrix

force: force vector

d° o° o° o° of

%%

activeDof = setdiff ((1:GDof)’, prescribedDof) ;

U = stiffness(activeDof, activeDof) \force (activeDof) ;
displacements = zeros (GDof,1);

displacements (activeDof) = U;

The post-computation is performed by following Eq. (3.34) using the nodal dis-
placements and analytical derivatives of shape functions.

sigma(e) = E/length_element* ([-1 1]*displacements (elementDof)) ;

matrix of derivatives of shape functions (B matrix) can be used instead without
changing the result.

Representation of results in terms of displacements and stresses is given in Fig. 3.6,
where it is clear that the displacement numerical solution is exact in the nodes and
approximated (by linear interpolation) in the elements. Numerical stress is constant
in the elements but it should be linear. A better solution in terms of displacements and
stresses can be achieved by increasing the number of finite elements or by increasing
the order of approximation (e.g. using quadratic shape functions).

3.6 Fixed Bar with Spring Support

Another problem involving bars and springs is illustrated in Fig. 3.7. The MATLAB
code for this problem is problem3.m, using direct stiffness method. In other words,
the stiffness matrix of the element is computed exactly according to Eq.(3.19) not
using Gauss quadrature.

3.6 Fixed Bar with Spring Support 49

x107

151

05 \

0 20 40 60 80

3000

2000 >~

1000 - N

-1000 | AN

-2000 SN]

-3000 : : : *
0 20 40 60 80
Fig. 3.6 Deformed shape (top) and stress plot (bottom) of a fixed bar under constant load compar-

ison between numerical (solid line) and exact (dash line) solutions

8 kN E = 70000 MPa

= 200 mm?

& A
%1 12 M k = 2000 N/mm
o o ®
2m 2 m

Fig. 3.7 Tllustration of problem 3, problem3.m

3 Bars or Trusses

3.6 Fixed Bar with Spring Support

The isoparametric version for the problem illustrated in Fig.3.7 is given in prob-
lem3a.m. Thus, Gauss quadrature is used in this code for computing the stiffness
matrix of the element.

52 3 Bars or Trusses

ea = zeros (1l,numberElements) ;

for e = l:numberElements
% elementDof: element degrees of freedom (Dof)
elementDof = elementNodes (e, :);

if e < 3 % bar elements

nn = length(elementDof) ;

length_element = nodeCoordinates (elementDof (2))
-nodeCoordinates (elementDof (1)) ;

detJacobian = length_element/2;

invJacobian = 1/detJacobian;

% central Gauss point (xi=0, weight W=2)

[shape,naturalDerivatives] = shapeFunctionL2 (0.0);

Xderivatives = naturalDerivatives*invJacobian;

% B matrix
B = zeros(l,nn); B(l:nn) = Xderivatives(:);
ea(e) = E*A;
stiffness (elementDof, elementDof) =
stiffness (elementDof, elementDof)
+ B'*B*2*detJacobian*ea(e) ;
else % spring element
stiffness (elementDof, elementDof) =
stiffness (elementDof, elementDof) + k*[1 -1;-1 1];
end
end

% boundary conditions and solution
prescribedDof = [1;4];

% solution
displacements = solution (numberNodes, prescribedDof, stiffness, force) ;

% output displacements/reactions
outputDisplacementsReactions (displacements, stiffness,
numberNodes, prescribedDof)

Both codes give the same solution and matches the analytical solution presented
in Logan [3]. The displacements at nodes 2 and 3 are 0.935mm and 0.727 mm,
respectively. The reactions at the supports 1 and 4 are —6.546kN and —1.455kN,

respectively.

3.7 Bar in Free Vibrations

The following problem involves the free vibration problem of the structure given in
Fig.3.8. The MATLAB code for this problem is problem3vib.m using isoparametric
elements and four methods for computing the mass matrix: consistent, lumped, full

and reduced integration.

3.7 Bar in Free Vibrations 53

E = 170000 MPa

A =200 mm?

k = EA/4000

p = 1000 ton/mm?3

Fig. 3.8 Tllustration of problem 3 vibrations, problem3vib.m

3 Bars or Trusses

3.7 Bar in Free Vibrations 55

The structure of the code given follows the one of problem3.m where the static
solution is substituted by eigenvalue solver function eigenvalue

function [modes,eigenvalues] = eigenvalue (GDof,prescribedDof, ...
stiffness,mass, maxEigenvalues)

function to find solution in terms of global displacements

GDof: number of degree of freedom

prescribedDof: bounded boundary dofs

stiffness: stiffness matrix

mass: mass matrix

maxEigenvalues: maximum eigenvalues to be computed. If 0 all the

eigenvalues are requested (suggested for beam structures)

00 0P P d° of o° of

%%
activeDof = setdiff ((1:GDof)’, prescribedDof) ;
if maxEigenvalues ==
[V,D] = eig(stiffness(activeDof,activeDof), ...
mass (activeDof,activeDof)) ;
else
[V,D] = eigs(stiffness(activeDof,activeDof), ...
mass (activeDof,activeDof) ,maxEigenvalues, ‘'smallestabs’) ;
end

eigenvalues = diag (D) ;

modes = zeros (GDof, length(eigenvalues)) ;
modes (activeDof, :) = V;
end

the generalized eigenvalue problem is solved with the help of the MATLAB function
eig and eigenfrequencies and eigenmodes are collected in the two vectors eigenval-
ues and modes. Note that the eigenvalues are the frequencies squared, according to
Eq. (3.33). The function provided is able to calculate all the eigenvalues and eigen-
vectors of the problem by setting maxEigenvalues=0 or a certain number of
eigenvalues by defining a number for the aforementioned variable. This feature will
be useful for two-dimensional problems where eigenvalue problems might be large.

The exact solution provided by Reddy [2] is w; = 2.02874, &, = 4.91318 where
o =wL./p/E.

Four implementations of the mass matrix of the element are given. By default
the full Gauss quadrature formula is applied (with 2 points because linear shape
functions have to be computed). The reader can comment and uncomment the lines
needed to carried out the results listed in Table 3.2.

Consistent refers to the exact integration of the mass matrix in Eq.(3.24) and
lumped to the lumped mass matrix in Eq. (3.24). Full and reduced refer to the two-
points and one-point Gauss integration rule, respectively. Since full integration is
exact, the same result is achieved as consistent mass matrix case, whereas reduced
integration and lumped mass matrix are not, because they come from different math-
ematical procedures.

56

Table 3.2 First two vibration frequencies of the bar in problem3vib.m

Bars or Trusses

w Exact [2] Consistent Lumped Full Gauss Reduced
Gauss

2.02875 2.11896 2.00000 2.11896 2.18518

2 491318 6.05416 4.00000 6.05416 10.35495

The error on the first frequency is small with respect to the exact one. On the
contrary the errors are larger for all computations for the second frequency due to
reduced number of finite elements used. By increasing the number of finite elements

accuracy improves.

References

1. J.N.Reddy, Energy Principles and Variational Methods in Applied Mechanics, 3rd edn. (Wiley,

Hoboken, 2017)

2. J.N.Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill International

Editions, New York, 2005)

3. D.L. Logan, A First Course in the Finite Element Method (Brooks/Cole, Pacific Grove, 2002)

Chapter 4 ®
Trusses in 2D Space oo

Abstract This chapter deals with the static and free vibration analyses of two dimen-
sional trusses, which are basically bars oriented in two dimensional Cartesian sys-
tems. A transformation of coordinate basis is necessary to translate the local element
matrices into the structural coordinate system. Trusses support compressive and ten-
sile forces only, as in bars. All forces are applied at the nodes. After the presentation
of the element formulation, some examples are solved by MATLAB codes.

4.1 Introduction

This chapter deals with the static and free vibration analyses of two dimensional
trusses, which are basically bars oriented in two dimensional Cartesian systems. A
transformation of coordinate basis is necessary to translate the local element matrices
(stiffness matrix, mass matrix and force vector) into the structural (global) coordinate
system. Trusses support compressive and tensile forces only, as in bars. All forces
are applied at the nodes. After the presentation of the element formulation, some
examples are solved by MATLAB codes.

4.2 2D Trusses

In Fig. 4.1 we consider a typical 2D truss in global x — y plane. The local system of
coordinates x” — y’ defines the local displacements u, u’,. The element possesses 2
degrees of freedom in the local setting,

T

ol =) uy) (4.1)

while in the global coordinate system, the element is defined by 4 degrees of freedom

u =(ur ur us usl 4.2)

© The Editor(s) (if applicable) and The Author(s), under exclusive 57
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_4

58 4 Trusses in 2D Space

U4
x’ uh
iu?,
U2
(%
~ u
Y
|—x
Fig. 4.1 2D truss element: local and global degrees of freedom
The relation between both local and global displacements is given by
u}y = ujcosd + up sin @ 4.3)
uy = u3c080 + uy sinf (4.4)

where 6 is the angle between local axis x” and global axis x, or in matrix form as

u =Lu 4.5)
being matrix L defined as
I m 0 O
L= [o 0 I m:| (4.6)

The [, m elements of matrix L can be defined by the nodal coordinates as

Xy — X -
l:cos@:gg m:sin9=y2—y1

4.7
L L (4.7)

being L, the length of the element,

Lo =+ (x2 —x1)2 + (2 — »1)? (4.8)

4.3 Stiffness Matrix 59

4.3 Stiffness Matrix

In the local coordinate system, the stiffness matrix of the 2D truss element is given
by the bar stiffness, as before:

o EAT 1 1 49
L, | -1 1 4.9)

In the local coordinate system, the strain energy of this element is given by
1 1T 1.1
U¢ = Eu K'u (4.10)
Replacing ' = Lu in (4.10) we obtain

1
U¢ = zuT[LTK/L]u 4.11)

It is now possible to express the global stiffness matrix as

K =LKL (4.12)
or
2 Im -2 —ln;
k=T I T @19
—im —-m?* Im m?

4.4 Mass Matrix

The mass matrix has to be also converted in the global Cartesian system. The con-
sistent M’ and lumped M’; mass matrices for the truss in local basis are

. pA 21

M'c="~L [1 2] (4.14)
. pA 1 0

M =L [0 1] (4.15)

respectively. Starting from the kinetic energy the definition of the mass matrix in the
global reference system can be derived as

60 4 Trusses in 2D Space

1 1
K¢ = E1‘1/TM"’ = 5aT[LTM’L]ﬁ (4.16)

It is now possible to express the global mass matrix as
M=L"ML 4.17)
for the consistent mass matrix

21 2lm 7 Im
pA 2lm 2m?* Im m?

M= ?Le 2 Im 2 2m (4.18)
Im m? 2m 2m?
and for the lumped mass matrix
? Im 0 0
M = %Le 181 ”(’)2 2 121 (4.19)

0 0 Im m?

In contrast to stiffness, translational masses never vanish, thus all translational
masses must be retained in the local mass matrix. In other words, by setting Im = 0
and 1 otherwise in the definitions (4.18) and (4.19) as

2 01 0
_pA 0 2 0 1
M= ?Le 1 0 2 0 (4.20)
10 1 0 2]
and for the lumped mass matrix
[1 0 0 0]
_ pA 01 0 O
M=5Lelo 0 1 0 @21
10 0 0 1]

4.5 Post-computation of Stress

In the local coordinate system, the stresses are defined as o, = E¢,. Taking into
account the definition of strain in the bar, we obtain

uh—u), E) E ,
oy =E =—[-1 11| ,|==—[-1 1llu (4.22)
Le Le U Le

4.5 Post-computation of Stress 61

120
E =30-10°
A=2

x I 120 I

Fig. 4.2 First 2D truss problem, problem4.m

By transformation of local to global coordinates, we obtain stresses as function of
the displacements as

—E[l l]L—E[l I m] (4.23)
Gx—Le U—Le m mlu .

4.6 First 2D Truss Problem

In a first 2D truss problem, illustrated in Fig.4.2, we consider a downward point
force (10,000) applied at node 1. The modulus of elasticity is £ = 30 - 10° and all
elements are supposed to have constant cross-section area A = 2. The supports are
located in nodes 2, 3 and 4. Structure degrees of freedom are shown in Fig. 4.3.
The code (problem4.m) listing is as:

% MATLAB codes for Finite Element Analysis
% problem4.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear

4 Trusses in 2D Space

4.6 First 2D Truss Problem 63

] |6
3 5
— 0 _
1 7
[0
,) |8

Fig. 4.3 First 2D truss problem: degrees of freedom

Note that this code calls some new functions. The first function (formStiffness2
Dtruss.m) computes the stiffness matrix of the 2D truss two-node element.

64 4 Trusses in 2D Space

The function (stresses2Dtruss.m) computes stresses of the 2D truss elements.
Both functions used the expressions shown in the beginning of this chapter.

The code problem4.m is therefore easier to read by using functions that can also be
used for other 2D truss problems.

Displacements, reactions and stresses are in full agreement with analytical results
by Logan [1] .

Displacements
ans =

.0000 0.0041
.0000 -0.0159
.0000 0
.0000
.0000
.0000
.0000
.0000

o J o Ul idhWDN B

O O O O o

reactions

4.6 First 2D Truss Problem

ans =
1.0e+03 *
0.0030 0
0.0040 7.9289
0.0050 2.0711
0.0060 2.0711
0.0070 -2.0711
0.0080 0
stresses
ans =
1.0e+03 *
3.9645
1.4645
-1.0355

65

The deformation of the structure is illustrated in Fig.4.4. We use a drawing routine
drawingMesh for the purpose. This routine needs the input of nodal coordinates
and elements connectivities and draws either undeformed and deformed meshes.
Moreover, element type is required for the correct representation as well as type of
line needed for the plot (which can be given according to MATLAB plot function).

Fig. 4.4 Deformed shape of
2D truss

120 1

100 -

80

60 -

40

20

66 4 Trusses in 2D Space

4.7 Second 2D Truss Problem

The next problem is illustrated in Fig.4.5. The degrees of freedom are illustrated in
Fig.4.6. The MATLAB code is problem5.m. The analytical solution of this problem
is presented in [1]. The results of this code agree well with the analytical solution,
although the analytical solution considered only half of the structure.

E = 70000 MPa, A = 300 mm?

50 kN 100 kN 50 kN

®
®
©,
©)

® sm
1 vy
Y
| 3 m | 3m |
x| 1 |
Fig. 4.5 A second truss problem, problem5.m
4 8 12
3 7 11
Q 2 7
— — ~ — J
1 5) 9
y 2 6 10

Fig. 4.6 A second truss problem: degrees of freedom

4.7 Second 2D Truss Problem

68 4 Trusses in 2D Space

Results are the following:

Displacements

ans =
1.0000 0
2.0000 0
3.0000 7.1429
4.0000 -9.0386
5.0000 5.2471
6.0000 -16.2965
7.0000 5.2471
8.0000 -20.0881

o

.0000 10.4942
10.0000 0
11.0000 3.3513
12.0000 -9.0386

reactions

ans =

1.0e+05 *

0.0000 0.0000

0.0000 .0000
0.0001 1.0000

=

stresses

ans =

-210.9015

122.4318
62.5575

4.7 Second 2D Truss Problem 69

Fig. 4.7 Deformed shape,
problem 5
3000
2000
1000
0
-1000 r
0 1000 2000 3000 4000 5000 6000
-44.2349
-173.1447
-88.4697
62.5575
-173.1447
-44.2349
122.4318
-210.9015

The deformed shape of this problem is shown in Fig.4.7.

4.8 2D Truss with Spring

In Fig. 4.8 we consider a structure that is built from two truss elements and one spring
element. For the truss elements the modulus of elasticity is £ = 210000 MPa, and
the cross-section area is A = 500 mm?. This problem is modeled with four points
and three elements. Figure4.9 illustrates the degrees of freedom according to our
finite element discretization.

The listing of the code (problem6.m) is presented.

MATLAB codes for Finite Element Analysis

problem6 .m

ref: D. Logan, A first course in the finite element method,
third Edition, mixing trusses with springs

A.J.M. Ferreira, N. Fantuzzi 2019

o0 o° o° of of

4 Trusses in 2D Space

The functions for forming the stiffness matrix formStiffness2Dtruss and computing
the stresses in each truss stresses2Dtruss are used with a “reduced” number of
elements numberElements-1 due to the presence of the spring.

4.8 2D Truss with Spring 71

E = 210000 MPa

2

A = 500 mm?

k = 2000 N/mm @

25 kN
450/
RECERUAN)
5 cos 45°
, ! 10 m cos 45°m

| . O

4
Fig. 4.8 Mixing 2D truss elements with spring elements, problem6.m
Fig. 4.9 Mixing 2D truss 4
elements with spring
elements: degrees of freedom 3
6 2

L 8’

In fact, the spring stiffness is added to global degrees of freedom 2 and 7, corre-
sponding to vertical displacements at nodes 1 and 4, after the assembly of the truss
structure.

Displacements, reactions and stresses are listed below. Displacements are exactly
the same as the analytical solution [1]. Stresses in bars show that bar 1 is under
tension and bar 2 is under compression.

72 4 Trusses in 2D Space

Displacements
ans =
1.0000 -1.7241
2.0000 -3.4483
3.0000 0
4.0000 0
5.0000 0
6.0000 0
7.0000 0
8.0000 0
reactions
ans =
1.0e+04 *
0.0003 -1.8103
0.0004 1.8103
0.0005 1.8103
0.0006 0
0.0007 0.6897
0.0008 0
stresses
ans =
51.2043
-36.2069

4.9 2D Truss in Free Vibrations

The structure in Fig. 4.5 (without the applied loads) is now studied in free vibrations
considering a constant density for each member of p = 1000 ton/mm?. The listing
of the code (problem5vib.m) follows.

4.9 2D Truss in Free Vibrations

74 4 Trusses in 2D Space

elementNodes, 'L2’, 'k.-");
drawingMesh (nodeCoordinates, elementNodes, ‘L2’ , 'k.--") ;
axis equal
set (gca, 'fontsize’,18)

omega = sqgrt (eigenvalues)

with respect to the correspondent static problem a function for the assembly of the
mass matrix is given

function [mass] =
formMass2Dtruss (GDof, numberElements,
elementNodes, numberNodes, nodeCoordinates, xx,yy, rhoA)

mass=zeros (GDof) ;

% computation of the system stiffness matrix
for e = l:numberElements
% elementDof: element degrees of freedom (Dof)
indice = elementNodes (e, :);
elementDof = [indice(1l)*2-1 indice (1) *2
indice(2)*2-1 indice(2)*2] ;
xa = xx(indice(2))-xx(indice(1l)) ;
va = yy(indice(2))-yy(indice (1)) ;
length_element = sqgrt (xa*xa+ya*ya) ;
% consistent mass matrix
k1 = rhoA*length element/6%*
[2010; 020 1;
1020; 010 2];
% lumped mass matrix
% k1l = rhoA*length_element/2*eye(4) ;
mass (elementDof, elementDof) =
mass (elementDof, elementDof) +k1;
end

end

where the selection of consistent and lumped mass matrices can be selected respec-
tively by commenting and uncommenting the correspondent lines of the code. The
eigenvalue function is used to obtain eigenfrequencies and eigenmodes.

The drawingMesh used in the static simulation is used here to plot one mode
shape at a time according to the variable modeNumber.

The first mode shape of the structure is given in Fig.4.10. The frequencies are
compared to the ones obtained by the same problem studied with a commercial FE
software and listed in Table 4.1.

Reference

3500 |

3000
2500
2000
1500

1000
500

-500 1

z — -

0

1000

2000 3000 4000

Fig. 4.10 First mode shape, problem 5 vibrations

5000

6000

Table 4.1 First three natural frequencies w of the structure in problem5vib

75

w- 1074 Ref Lumped Consistent
1 7.9193 7.9193 8.2926

2 11.6238 11.6238 13.0233

3 17.8650 17.8650 22.7597
Reference

1. D.L. Logan, A First Course in the Finite Element Method (Brooks/Cole, 2002)

Chapter 5 ®)
Trusses in 3D Space oo

Abstract The present chapter generalizes the 2D truss model of the previous chapter
as trusses in 3D Cartesian space. Static and free vibration problems are solved trans-
forming the local stiffness into global 3D quantities. Some simple problems are
solved in MATLAB and verified with reference codes.

5.1 Introduction

The present chapter generalizes the 2D truss model of the previous chapter as trusses
in 3D Cartesian space. Static and free vibration problems are solved transforming
the local stiffness, mass matrices and load vector into global 3D quantities. Some
simple problems are solved in MATLAB and verified with reference codes.

5.2 Basic Formulation

We consider now trusses in 3D space. A typical two-noded 3D truss element is
illustrated in Fig.5.1. Each node has three global degrees of freedom.

The displacement vector in local coordinates does not change with respect to
the one in the previous chapter (5.1). On the contrary, the displacements in global
coordinates projected from node 1 and node 2 are

u' =[u; wy us ug wus ug) (5.1

The relationship between local and global coordinates is due to the direction
cosines matrix (4.5) as

[LL,1.000
L= [0 0011 lj (5:2)
© The Editor(s) (if applicable) and The Author(s), under exclusive 77

license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,
Solid Mechanics and Its Applications 157,
https://doi.org/10.1007/978-3-030-47952-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_5

78 5 Trusses in 3D Space

z

Fig. 5.1 Trusses in 3D coordinates: local and global coordinate sets

where the cosines are obtained as

X2 — X1
I, = L ;L=

The stiffness matrix in global coordinates is given by

Pl L, =12 =L, —Ll,
2Ll —Ld, —12 —1l,
EA 2l 1, I

—1TKer, —
K=L'KL="" AR, (5.3)
21
sym 12

Analogous transformation is performed for the global mass matrix. The consistent
mass matrix becomes

2 00100
20010
ey PA 2001
M=L'ML= "L, 500 (5.4)
20

sym 2

5.2 Basic Formulation 79

The lumped mass matrix is

1 00000

10000

o Tage _ﬁ 1000
M=L"M‘L = 2Le 100
10

sym 1

(5.5)

We then perform a standard assembly procedure to obtain the stiffness and mass
matrices and the global vector of equivalent nodal forces for the complete system,
as we did for 2D trusses.

5.3 First 3D Truss Problem

We consider the 3D truss problem illustrated in Fig.5.2. The MATLAB code
(problem7.m) is used to evaluate displacements, reactions and forces at elements.

The Cartesian coordinates of the nodes Py, P,, P3, P4 are listed in Fig. 5.2. Bound-
ary conditions are indicated by vector U; = [u;, v;, w;] fori = 1, 2, 3, 4 in Fig.5.2.
In this problem, the displacement at node 1 along y (v; = 0) is fixed as well as all
displacements of nodes 2, 3 and 4. The area of the members are indicated by A; for
i=1,2,3.

e e e e e e
% MATLAB codes for Finite Element Analysis

$ problem7.m

% ref: D. Logan, A first course in the finite element method,
% third Edition, A 3D truss example

% A.J.M. Ferreira, N. Fantuzzi 2019

%%

% clear memory

clear

% E; modulus of elasticity

% A: area of cross section

E = 1.2e6;

A = [0.302;0.729;0.187]; % area for various sections

% generation of coordinates and connectivities
nodeCoordinates = [72 0 0; 0 36 0; 0 36 72; 0 0 -48];
elementNodes = [1 2;1 3;1 4];

numberElements = size(elementNodes,1) ;

numberNodes = size(nodeCoordinates,1);

xx = nodeCoordinates(:,1);

vy = nodeCoordinates(:,2);

80 5 Trusses in 3D Space

E=12-10°

Py =(72,0,0)

P> = (0,36,0)

Ps = (0,36,72)

Py = (0,0,—48)

Uz =Us =Us = (0,0,0)
vy =0

A, =0.302

As =0.729

Az =0.187

Fig. 5.2 A 3D truss problem: geometry, mesh, loads and boundary nodes, problem7.m

5.3 First 3D Truss Problem

The code is supported by formStiffness3Dtruss.m for the assembly and generation
of the stiffness matrix in the global coordinates and illustrated above

The stress calculation for each member in stresses3Dtruss.

82 5 Trusses in 3D Space

z1l = nodeCoordinates(indice(1),3);
x2 = nodeCoordinates (indice(2),1);
y2 = nodeCoordinates (indice(2),2);
z2 = nodeCoordinates(indice(2),3);

(y2-yl

L = sqgrt((x2-x1)*(x2-x1) +
(z2-z1) *(z2-z1)) ;
CXx = (x2-x1)/L; CY¥x = (y2-yl)/L; CzZx = (z2-zl)/L;

y2-yl) * (y2-yl) + ...

u = displacements (elementDof) ;
member_stress(e) = E/L*[-CXx -CY¥x -CZx CXx CY¥x CZx]*u;
fprintf ('%$3d %12.8f\n’,e, member stress(e)) ;
end

The results are in excellent agreement with analytical solution in [1]:

Displacements

ans =
1.0000 -0.0711
2.0000 0
3.0000 -0.2662
4.0000 0
5.0000 0
6.0000 0
7.0000 0
8.0000 0
9.0000 0
10.0000 0
11.0000 0
12.0000 0

reactions

ans =
2.0000 -223.1632
4.0000 256.1226
5.0000 -128.0613
6.0000 0
7.0000 -702.4491
8.0000 351.2245

9.0000 702.4491
10.0000 446.3264
11.0000 0
12.0000 297.5509

5.3 First 3D Truss Problem 83

Stresses in elements
1 -948.19142387
2 1445.36842298
3 -2868.54330060

5.4 Second 3D Truss Example

In Fig.5.3 a second example of a 3D truss is illustrated.

2(0,4,0) F = 210000 MPa
A = 100 mm?
@ Uy =Usz =Us =Us =(0,0,0)
3(0, 4, 6)
® Ny

_17 1)

4(4,0,3)

z

Fig. 5.3 Second 3D problem, problem8.m

84 5 Trusses in 3D Space

The results are in excellent agreement with analytical solution in [1]:

Displacements
ans =
.0000 -0.3024

.0000 -1.5177
.0000 0.2688

o Ul W N

.0000 0
.0000 0
.0000 0

5.4 Second 3D Truss Example

7.0000
8.0000
9.0000
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000

reactions

ans =

1.0e+03 *

.0040 0
.0050
.0060 0
.0070 1.
.0080
.0090 -1.
.0100
.0110 7.
.0120
.0130 -1.
.0140
.0150 0.

O O O OO OO OO oo o
[\

O O O O O O o o o

.2709

0

.2032

3546
0
0160
0
9681
0
6255

.0319

8128

Stresses in elements

1 -3.38652236
2 -16.93261180
3 -79.68086584
4 -27.26097914

85

Code problem8.m call functions formStiffness3Dtruss.m for stiffness computa-
tion and function stresses3Dtruss.m for computation of stresses at 3D trusses.
introduced for problem7.m.

86 5 Trusses in 3D Space

5.5 3D Truss Problem in Free Vibrations

We consider the 3D truss geometry presented in Sect.5.3 for introducing the free
vibration problem of 3D trusses. The density of all members have been considered
as unitary p = 1. The problem is listed in problem7vib.m.

5.5 3D Truss Problem in Free Vibrations

The consistent (5.4) and lumped (5.5) mass matrices are carried out in Code
formMass3Dtruss.m

88 5 Trusses in 3D Space

Table 5.1 Vibration frequencies for 3D truss

w Consistent Lumped Ref
1 9.2104 7.5203 7.52028
2 15.8813 12.9670 12.96705

stiffness (elementDof,elementDof) = ...
stiffness(elementDof, elementDof) + ...
rho (e) *A(e) *L*Mass;
end

end

The reader can easily switch from consistent to lumped mass matrix by comment-
ing and un-commenting related code lines.

Results of the present analysis are listed in Table 5.1 where consistent and lumped
mass matrix are used. Since the structure has only two free motions (of node 1)
two frequencies are carried out. The reference solution has been carried out with
a commercial finite element code with same number of finite elements. Excellent
agreement is shown and clearly the selected commercial code considers only lumped
mass matrix for truss elements.

Reference

1. D.L. Logan, A First Course in the Finite Element Method (Brooks/Cole, Pacific Grove, 2002)

Chapter 6 ®)
Bernoulli Beams Becit

Abstract Bernoulli theory is a classical beam theory where the transverse shear
deformation is neglected and the deflection of the beam indicated by w is the only
degree of freedom of the model and the in-plane rotation si given by the derivative of
the transverse deflection with respect to the beam axis. In this chapter we perform the
static, vibration and buckling analysis of Bernoulli beams in bending configuration.
Results will be compared to analytical and reference results from the literature.

6.1 Introduction

Bernoulli theory is a classical beam theory where the transverse shear deformation is
neglected and the deflection of the beam indicated by w is the only degree of freedom
of the model and the in-plane rotation si given by the derivative of the transverse
deflection with respect to the beam axis. The classical solution of the present problem
considers an approximation using the well-known Hermite interpolation functions
which are able to give exact nodal solution in the generic finite element (such formu-
lation is known as superconvergent element). In this chapter we perform the static,
vibration and buckling analysis of Bernoulli beams in bending configuration. Results
will be compared to analytical and reference results from the literature.

6.2 Bernoulli Beam

The beam is defined in the x — z plane, with constant cross-section area A (Fig.6.1).

The Bernoulli beam theory assumes that undeformed plane sections remain plane
under deformation. The axial displacement u, at a distance z of the beam middle axis
is given by

© The Editor(s) (if applicable) and The Author(s), under exclusive 89
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_6

90 6 Bernoulli Beams

Fig. 6.1 Bernoulli beam element with 2 nodes

ow
=—z— 6.1
u i (6.1)
where w is the transverse displacement. Thus, the movement of the beam is totally
described by the vertical displacement.
Strains are defined as

ou 32w u Jw 0 6.2)
€Ex = — = —Z——, Xz — a. = :
YT ox T T Yawr Ve T T
The elastic strain deformation is obtained as
1 1)
U=- | ovdV == | EedV (6.3)
2)y 2)y

Taking dV = d Adx, and integrating upon the area A, we obtain

1 [e 2w\’
U = E/La EIy (W) d.x (64)

where I, is the second moment of area of the beam cross-section.
The kinetic energy is obtained as

1 1 ['\
K=- 12 'de=—/ I, | — Aw?) d 6.5
2/V(pu+pw) 5)\ (5y) +edu®)dx (6.5)

where dot identifies time derivative and the first term indicates the rotary inertia and
the second one is the vertical bulk inertia of the beam’s cross section. For thin beams
rotary inertia can be neglected as it is done in the following for the sake of simplicity.
Interested readers can easily include the rotary inertia contribution in the mass matrix
following [1].

The external work for this element by considering the transverse pressure p and
the axial load N° (that accounts for nonlinear Von Kdrman strain) is given by

6.2 Bernoulli Beam 91

a “Bwds
sw= | powdr— [NZEZYg, (6.6)
—a dx 0x

—a

With kinetic, strain energies and external work Hamilton’s Principle can be formu-
lated.

At each node we consider 2 degrees of freedom, w and i.’—f, the transverse dis-
placement and rotation of the cross-section.

T 8w1 sz} (67)

we = -— i}
|:w1 ox w2 ox

The transverse displacement is interpolated by Hermite shape functions [1] as
w = N(E)w* (6.8)

being the shape functions defined as

1

N1($)=Z(2—3$+$3) (6.9)
a 2 3

N2(§)=Z(1—€—§ +£&7) (6.10)
1

N3($)=Z(2+3$—$3) (6.11)
a 2 3

N4($)=Z(—1—$+S +§&7) (6.12)

where £ = x/a identifies the dimensionless axial coordinate. These functions (known
as Hermite approximation functions) can be carried out from the elastic solution of
a cantilever beam by enforcing alternatively unitary displacements and rotations at
the boundaries. The strain energy is obtained as

1 e 2w\’ 1 (Y EIL (9w)>
U:—/ Ern (22 dx:—f > (20 g
2 J_, 0x2 2 J_ a* \ 3&2

1 EI, (!
= w222 / N'"Ndew® (6.13)
2 a’ -1

2
where N’ = d_§2 The element stiffness matrix is then obtained as

3 3a -3 3a
e EI_V ! nT N/ EIy 3a 4612 —3a 202
K¢ = /_lN Nag = 5| 701 T (6.14)

3a 2a® —3a 4a®

al

92 6 Bernoulli Beams

The kinetic energy takes the form

1 [1! 1 :
K = 5/ pAwldx = E/ pAw ade = EweT/ pAaNTNdEW® (6.15)
-1 -1

—a

The mass matrix is clearly identified by

156 44a 54 —26a

1 2 2
e _ T pAa | 44a 164> 26a —12a
M= [pAaNTNAE = Zo | sS4 26 156 —dda (6.16)
—26a —12a* —44a 164>
The work done by the distributed forces is defined as
a 1 1
SW¢ =/ pdw dx =/ pdw adé = 5weTaf pNT de (6.17)
—a —1 -1

The vector of nodal forces equivalent to distributed uniform p forces is obtained as

3
1
£ = ap/ NTge =22 | ¢@ (6.18)
1 313
—da

The work done by the axial force N is defined as
s / yodw dsw /1 N° dw dsw g
= —_———a
2 ox ox ° 1 a? 3E &

eT]V0 ! RN
—swl | N'Ndew (6.19)
a J

The stability matrix is defined as

36 6a —36 6a

e 1 e 1 | 3L 16a* —6a —4a’
¢ _Z/IN Nd§ = 50 1 236 —6a 36 —6a
6a —4a* —6a 164>

(6.20)

After assembly the algebraic solving system is

Mii + Ku — N°Gu =f (6.21)

6.2 Bernoulli Beam 93

The expression (6.21) allows to solve the static, free vibration and buckling problem
of Bernoulli beam. Note that the buckling and free vibration problem are both solved
in the form of an eigenvalue problem. Thus, the codes of the two problems will be
very similar interchanging the mass matrix with the stability matrix.

6.3 Bernoulli Beam Problem

In Figs. 6.2 and 6.3 we consider a simply-supported and clamped Bernoulli beam in
bending, under uniform load.

For the sake of simplicity, unitary values of the stiffness EI = 1, beam length
L = 1andappliedload p = 1 are considered. Thus, in terms of central displacements
the exact solution for the simply supported beam is Sexaer = 5/384 = 0.0130208333
and for the clamped case Sexaer = 1/384 = 0.0026041667. Code problem9.m solves
these problems for both boundary conditions. The user can define the number of ele-

AT
A é z,u

Fig. 6.2 Simply-supported Bernoulli problem, under uniform load, problem9.m

ElI=1
p=1 1 pL*
6cxact P —
384 EI

Fig. 6.3 Clamped Bernoulli problem, under uniform load, problem9.m

94

Fig. 6.4 Deformed shape
for simply-supported and
clamped beams

0®

6 Bernoulli Beams

-0.002 1

-0.004 1

-0.006 1

-0.008 1

-0.01

-0.012 ¢

-0.014
0

0¢

0.2

%1072

0.4 0.6 0.8 1

-3

0 0.2

0.4 0.6 0.8 1

ments, however the present formulation is exact in the nodes and approximated in
the elements (through Hermite polynomials). Thus, a minimum number of 2 finite
element is required in order to obtain exact solution at beam central section. The
maximum transverse displacement (wp,x) for simply-supported beam and clamped
beam match the analytical solution as illustrated in Fig. 6.4 with 2 finite elements.
Interpolation is performed using 50 points in order to have a good display of the
deformed shape (see drawInterpolatedBeam.m code given), however, in case sev-
eral finite elements are set a reduction of interpolation points is suggested in order
to increase code speed while displaying final deformed shape.

6.3 Bernoulli Beam Problem

6 Bernoulli Beams

This code calls function formStiffnessBernoulliBeam.m for the computation of the
stiffness matrix and the force vector for the Bernoulli beam 2-node element. Note
that the stiffness matrix is computed exactly without applying Gauss quadrature.
The solutions given match the exact solutions because the Hermite approximation
polynomials are derived by following the solution of the elastic line of the Bernoulli
beam [1].

6.4 Bernoulli Beam with Spring 97

T
— 1 t=1/10°

Fig. 6.5 Bernoulli beam with spring, under uniform load, problem9a.m

6.4 Bernoulli Beam with Spring

Figure 6.5 illustrates a beam in bending, clamped at one end and supported by a
spring at the other end. The beam width is considered as unitary. Code problem9a.m
illustrates the use of MATLAB for solving this problem.

% MATLAB codes for Finite Element Analysis
% problem9%a.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear

E; modulus of elasticity

I: second moment of area

L: length of bar

= le6; L=10; t=L/1000; I=1*t"3/12; EI=E*I;

[00 o0 o°

% generation of coordinates and connectivities
numberElements = 3;
nodeCoordinates = linspace(0,L,numberElements+1) ’;
L = max(nodeCoordinates) ;
numberNodes = size(nodeCoordinates,1);
xx = nodeCoordinates(:,1);
elementNodes = zeros (numberElements,?2) ;
for i = 1l:numberElements
elementNodes (i,1) = 1i;
elementNodes (i,2) = i+1;
end

6 Bernoulli Beams

6.4 Bernoulli Beam with Spring 99

Results are compared with finite element solution by Bathe [2] in his Solution Man-
ual. The transverse displacement at the right end of the beam is 374.9906 for the
MATLAB solution, while Bathe presents 394.7275, using three finite elements. The
relative error between the two solutions is about 5%. The present implementation
coincides with exact solution available in the book by Reddy [3] given by

L= P (R B
w = —— —
8ET 3ET

L3 kL3 kL3\™!
_ (1 _) (1 + _)
. OEI 24EI 3EI

6.5 Bernoulli Beam Free Vibrations

(6.22)
dw

Cdx

With references to Fig. 6.2 by removing the applied transverse loads, we consider a
simply-supported Bernoulli beam in free vibrations.

The reference code problem9vib.m is given below which has the same structure
of problem9.m where the static loads are removed and substituted by the mass
matrix and eigenvalue problem.

% MATLAB codes for Finite Element Analysis
% problem9vib.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear

E; modulus of elasticity

I: second moment of area

L: length of bar

=1; I =1; EI = E*I; rho = 1; A = 2.3; rhoA = rho*A;

[00 o0 of

% generation of coordinates and connectivities
numberElements = 64;
nodeCoordinates = linspace (0,1, numberElements+1) ’;
L = max(nodeCoordinates) ;
numberNodes = size(nodeCoordinates,1);
xx = nodeCoordinates(:,1);
elementNodes = zeros (numberElements,2) ;
for i = 1:numberElements
elementNodes (i,1)=1i;
elementNodes (i,2)=1i+1;
end

% for structure:
% displacements: displacement vector

6 Bernoulli Beams

The function formMassBernoulliBeam.m computes the mass matrix and it is listed
below

6.5 Bernoulli Beam Free Vibrations 101

22*LElem 4*LElem”2 13*LElem -3*LElem”2;
54 13*LElem 156 -22*LElem;
-13*LElem -3*LElem”2 -22*LElem 4*LElem”2];

% mass matrix
mass (elementDof, elementDof) = ...
mass (elementDof, elementDof) + kl1;

end

end

The convergence of the present numerical solution is shown in Table 6.1 compared
to the exact frequencies for simply supported beams

2 2 El
wp=nn" |——, for n=1,2,... (6.23)
pAL?*

The first three frequencies converge with 64 finite elements (N = 64), whereas the
first frequency converges with 16 (N = 16).

6.6 Stability of Bernoulli Beam

A simply supported beam under axial load only is considered. Such problem leads
to the well-known Euler buckling loads for the beam which exact solution is

El
N =n?n2=—, for n=1,2,... (6.24)
n LZ
The reference code problem9buk.m, given below, solves the linear buckling problem
of Bernoulli beam. As previously stated this problem is analogous to the free vibration
one (eigenvalue problem) wherein the mass matrix is substituted by the stability
matrix.

Table 6.1 First three natural frequencies of simply supported beam

w1 w2 w3
Present N=2 6.5335 28.8926 72.6239
N=4 6.5095 26.1340 59.6406
N=38 6.5079 26.0381 58.6458
N =16 6.5078 26.0317 58.5753
N =32 6.5078 26.0313 58.5707
N =64 6.5078 26.0313 58.5704
Exact 6.5078 26.0313 58.5704

6 Bernoulli Beams

6.6 Stability of Bernoulli Beam 103

The function formStabilityBernoulliBeam.m computes the stability matrix and it
is listed below

The convergence of the numerical solution is given in Table 6.2 compared to the
exact buckling loads for simply supported beams. The solution converges up to the
third buckling load with 64 elements (N = 64) the critical load is obtained with 16
elements (N = 16).

104

Table 6.2 First three buckling loads of simply supported beam

6 Bernoulli Beams

N} Ny Ny

Present N=2 9.9438 48.0000 128.7228

N=4 9.8747 39.7754 91.7847

N=38 9.8699 39.4986 89.0484

N=16 9.8696 39.4797 88.8410

N =32 9.8696 39.4785 88.8274

N =64 9.8696 39.4784 88.8265
Exact 9.8696 39.4784 88.8264
References

1. J.N. Reddy, An introduction to the finite element method, 3rd edn. (McGraw-Hill International

Editions, New York, 2005)

2. K.J. Bathe, Finite element procedures in engineering analysis (Prentice Hall, 1982)
3. J.N. Reddy, Energy principles and variational methods in applied mechanics, 3rd edn. (Wiley,

Hoboken, NJ, USA, 2017)

Chapter 7 ®)
Bernoulli 2D Frames G

Abstract In this chapter two-dimensional frames under static loading and free
vibrations are analyzed. The present formulation is a generalization of the previ-
ous Bernoulli beam in local coordinates. The stiffness and mass matrices are given
by transformation of the same matrices in local coordinates by a matrix of rotation
which is a function of the beam slope with respect to the horizontal axis.

7.1 Introduction

In this chapter two-dimensional frames under static loading and free vibrations are
analyzed. The present formulation is a generalization of the previous Bernoulli beam
in local coordinates. The stiffness and mass matrices are given by transformation of
the same matrices in local coordinates by a matrix of rotation which is a function of
the beam slope with respect to the horizontal axis.

7.2 2D Frame Element

In Fig.7.1, we show the two-noded Bernoulli beam element. Each node has three
global degrees of freedom, two displacements in global axes and one rotation.
The vector of global displacements is given by

T
u =luy, us, Uz, us, u3z, Usl (7.1)

Note that the new numbering of global degrees of freedom (with respect to the 2D
truss problem presented in the previous chapters), to exploit MATLAB programming
strengths. In order to match the ordering of degrees of freedom, the stiffness matrix
has to be rearranged, as shown in the code listing. We define a local basis with cosines
[, m, with respect to 6, the angle between x’ and x. In this local coordinate set the
displacements are detailed as

© The Editor(s) (if applicable) and The Author(s), under exclusive 105
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_7

106 7 Bernoulli 2D Frames

T

Fig. 7.1 A 2D frame element

T
u'l o=, uy, uh, o oul, uh, o ugl (7.2)

Noting that u; = u3, ug = ue, we derive a local-global transformation matrix in the
form

u =Lu (7.3)
where
I 0mO000
0 [O0mOO
-m 0 [000
L=109 _moio00 74
0 0 0010
0 0 0001

In local coordinates, the stiffness matrix of the frame element is obtained by com-
bination of the stiffness of the bar element and the Bernoulli beam element, in the
form

AL? —AL* 0 O 0 0
ALZ 0 0 0 0

e E 121 =121 6IL 6IL
K= 3 121 —6IL —6IL (7.5)
411% 21L%

sym 4117

7.2 2D Frame Element 107

In global coordinates, the strain energy is given by

1 1
U = gu/TK’u’ = zuTLTK’Lu =u’Ku (7.6)
where
K=L’K'L (7.7)

In local coordinates, the mass matrix of the frame element is obtained by combination
of the mass of the bar element and the Bernoulli beam element, in the form

140 70 0 0 O 0
140 0 0 O 0
PAL 156 54 22L —13L

M™ =7 156 131 —22L (7.8)
41% 3172
sym 417

In global coordinates, the kinetic energy is given by

1 1
K= Ju M= 4" L'M'Li = " Ma (7.9)

where
M=L"M'L (7.10)

The load vector for the present problem has to be defined according to the global
Cartesian reference system and the order of the degrees of freedom reported in Eq. 7.1
as the following scheme

F=[Fui...Fon Fyr ... Foy My ... M,]" (7.11)

where F,, F, and M are the horizontal and vertical concentrated forces and moments
applied at the nodes. The number of nodes in the mesh is indicated with n.

Static and free vibration (with F = 0) problems are shown in the following through
codes. The static problem involves stiffness matrix inversion and free vibration prob-
lem is carried out as eigenvalue problem.

7.3 First 2D Frame Problem

Consider the two-dimensional frame illustrated in Fig. 7.2. The code for solving this
problem is problem10.m. The degrees of freedom are shown in Fig.7.3.

108 7 Bernoulli 2D Frames

Fig. 7.2 A 2D frame example, problem10.m

1/15 /162
NI

3 _’11 _}2
x

Fig. 7.3 Degrees of freedom for problem 10

7.3 First 2D Frame Problem

Code problem10.m calls function formStiffness2Dframe.m, to compute the stiff-
ness matrix of two-dimensional frame elements.

110 7 Bernoulli 2D Frames

Results are given as:

Displacements

ans =
1.0000 0
2.0000 0.0000
3.0000 -0.0000
4.0000 0
5.0000 0
6.0000 -1.3496
7.0000 -1.3496
8.0000 0
9.0000 0
10.0000 -0.0005

7.3 First 2D Frame Problem 111

Fig. 7.4 Deformed shape of
problem 10
3000 - 1
2000
1000
0
-1000 1
-2000 1
0 2000 4000 6000 8000
11.0000 0.0005
12.0000 0
reactions
ans =
1.0e+07 *
0.0000 -0.0000
0.0000 0.0000
0.0000 0.0010
0.0000 0.0010
0.0000 2.2596
0.0000 -2.2596

The deformed shape is given in Fig.7.4. The interpolation of the deformed shape
according to the calculated nodal variables is carried out in the script drawlnter-
polatedFrame2D.m which is given but not reported in the text for the sake of
conciseness.

Note that even though only one element per segment is selected, clamped boundary
conditions in terms of boundary rotations are satisfied (zero slope) due to the Hermite
interpolation. By increasing the finite elements (by dividing the given 3 elements)
accuracy improves as it is shown in the following examples.

7.4 Second 2D Frame Problem

Consider the frame illustrated in Fig. 7.5. The code for solving this problem is prob-
lem11.m. The degrees of freedom are shown in Fig.7.6.

112

15 kN/

2

N

6 m

|, 10 kN-m

7 Bernoulli 2D Frames

E = 210000 MPa
A = 200 mm?
I=2-10% mm*

Fig. 7.5 A 2D frame example: geometry, materials and loads, problem11.m

Fig. 7.6 A 2D frame example: degree of freedom ordering

6

7

4
N’

7.4 Second 2D Frame Problem

114 7 Bernoulli 2D Frames

figure

XX = displacements (1:numberNodes) ;

YY = displacements (numberNodes+1:2*numberNodes) ;
dispNorm = max(sqgrt (XX." 2+YY."2));

scaleFact = 50*dispNorm;

hold on

drawingMesh (nodeCoordinates+scaleFact* [XX YY],elementNodes,
‘L2, 'k

drawingMesh (nodeCoordinates, elementNodes, ‘L2’ , 'k.--") ;

axis equal
set (gca, 'fontsize’,18)

% plot interpolated deformed shape acoording

% to Lagrange and Hermite shape functions
drawInterpolatedFrame2D

Results are listed below.

Displacements
ans =
1.0000 0
2.0000 5.2843
3.0000 4.4052
4.0000 0
5.0000 0
6.0000 0.6522
7.0000 -0.6522
8.0000 0
9.0000 0
10.0000 -0.0005
11.0000 -0.0006
12.0000 0
reactions
ans =
1.0e+07 *
0.0000 -0.0009
0.0000 -0.0006
0.0000 -0.0005
0.0000 0.0005
0.0000 3.0022
0.0000 2.2586

The deformed shape of this problem is illustrated in Fig.7.7.

As it was aformentioned, the Bernoulli frame element is exact at the nodes (super-
convergent element) and interpolated in the domain. By increasing the number of
elements will give a better approximation (more exact nodal values) in other parts
of the structure. It is generally suggested to place a node where numerical value is
needed rather than interpolate it. The following Code problem11b.m considers 12
elements (4 divisions for each segment) in the same frame structure.

7.4 Second 2D Frame Problem 115

Fig. 7.7 Deformed shape of 6000 F
problem 11

5000 r
4000
3000 -
2000 r

1000

0 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

116 7 Bernoulli 2D Frames

Generation of nodal coordinates and element nodes is fundamental for force vector
and boundary conditions definitions. The order of degrees of freedom follows the
same rule considered before as u degrees of freedom (displacement along x), then
the v degrees of freedom (displacement along y) and finally rotations.

Results are given below.

Displacements

ans =
1.0000 0
2.0000 0.6857
3.0000 2.2689
4.0000 4.0387

7.4 Second 2D Frame Problem

0 J o U

13

21

23

33

.0000
.0000
.0000
.0000

9.
10.
11.
12.

0000
0000
0000
0000

.0000
14.
15.
16.
17.
18.
19.
20.
.0000
22.
.0000
24.
25.
26.
27.
28.
29.
30.
31.
32.
.0000
34.
35.
36.
37.
38.
39.

0000
0000
0000
0000
0000
0000
0000

0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000

reactions

ans =

1.0e+07

o O O O o o

The deformed shape of this problem is illustrated in Fig.7.8.

.0000
.0000
.0000
.0000
.0000
.0000

o R Wi B> P> UL

o O O O o

o

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

-0.
-0.
-0.

0.
.0022
.2586

3
2

.2843
.0645
.8447
.6249
.4052
.2197
.7606
.5226

.1630
.3261
.4891
.6522
L1942
.0687
.0912
-0.
-0.
-0.
-0.

6522
4891
3261
1630

0008
0012
0011
0005
0002
0001
0002
0006
0009
0010
0006

0009
0006
0005
0005

117

118 7 Bernoulli 2D Frames

Fig. 7.8 Deformed shape of 6000 F
problem 11b

5000 r
4000
3000 -
2000 r

1000

0 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000

7.5 2D Frame in Free Vibrations

The free vibrations of the 2D frame structure of the previous example is shown in
problem11bvib.m. The material density has been considered as p = 8.05 - 10~°
ton/mm?>. The code is given below

7.5 2D Frame in Free Vibrations

120 7 Bernoulli 2D Frames

Code problem11bvib.m calls function formMass2Dframe.m, to compute the mass
matrix of two-dimensional frame elements.

7.5 2D Frame in Free Vibrations 121

6000 [
7000 [

5000 [6000 -

4000 f 5000 |
4000

3000
3000 [

2000 |
2000

1000 1000

ol 0 . .
-1000 0 1000 2000 3000 4000 5000 6000 0 2000 4000 6000

6000 [

7000

6000 | 5000

5000 | 4000

4000
3000 [

3000 [
2000

2000

1000 1000 -

0 0
0 2000 4000 6000 0 1000 2000 3000 4000 5000 6000

Fig. 7.9 First four mode shapes of problem11bvib.m

Table 7.1 First four natural frequencies of the 2D frame in problem11bvib.m

w1 [0)) w3 w4
Ref 414.2418 869.8700 1181.6826 1577.3839
Present 422.3818 873.3047 1237.3850 1639.4477
Error (%) 1.97 0.39 471 3.93

The results are verified with another finite element code with the same number
of elements and degrees of freedom per node. The first four mode shapes are shown
in Fig.7.9 and the correspondent frequencies are listed in Table 7.1 where a good

agreement is observed between the two solutions.

Chapter 8 ®)
Bernoulli 3D Frames G

Abstract The analysis of three dimensional frames is quite similar to the analysis
of 2D frames. In the 2-node 3D frame finite element we now consider in each node
three displacements and three rotations with respect to the three global cartesian axes.
However, the complexity in such structures is due to the orientation of the beam in
space other than in 2D plane. Before introducing the stiffness and mass matrices
in the global reference system rotation matrices for vectors in 3D space are firstly
introduced.

8.1 Introduction

The analysis of three dimensional frames is quite similar to the analysis of 2D frames.
In the 2-node 3D frame finite element we now consider in each node three displace-
ments and three rotations with respect to the three global cartesian axes. However,
the complexity in such structures is due to the orientation of the beam in space other
than in 2D plane. Before introducing the stiffness and mass matrices in the global
reference system rotation matrices for vectors in 3D space are firstly introduced.

8.2 Matrix Transformation in 3D Space

It is assumed that the local axis x’ is aligned with the beam major axis as shown
in Fig.8.1. For 2D frames one single rotation is sufficient for the definition of the
beam in the x — y plane, on the contrary at least three rotations are needed in the 3D
space. The definition of the direction cosines according to axis x’ is straightforward
and follows the presentation given in the 2D frames chapter as

Xy — X1 Y2 =V 22 —121
= - =—=——; C, = (8.1)
L,

© The Editor(s) (if applicable) and The Author(s), under exclusive 123
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_8

124 8 Bernoulli 3D Frames

Uil

z

Fig. 8.1 A 3D frame element and its local and global reference systems

where x, y and z refer to the global reference system and x’, y" and 7z’ is the local
beam reference system and

Le=~/(x2 = x1)2 4 (v2 — y1)> + (22 — 21)? (8.2)

is the beam length. The vector rotation matrix can be represented in matrix form as

Cxx’ ny’ sz/
r=|Cy Cpy Cy (8.3)
sz’ Cyz/ sz’

where the definitions of the last two rows is shown below. The vector rotation matrix
in 3D space (8.3) is given by the product of three rotation matrices as

r = R,RsR, (8.4)

where «, 3 and y are the rotation angles about x’, y" and 7" axes, respectively. Rotation
about z axis, R, is given by

cosy siny 0
R,=|—sinycosy0 (8.5)
0 0 1

8.2 Matrix Transformation in 3D Space 125

wherecosy = Cyy/Cyy,8iny = Cypr/Cyyand Cy, = /Cfx, + Cfx,.Rotation about
y axis, Rg is given by
cos3 0 sinfg
Rs = 0O 1 0 (8.6)
—sin (3 0 cos B

where cos 3 = Cy, and sin 3 = C,,». Combining the rotation about y and z axis the
vector rotation matrix is

Cxx’ ny’ sz’
ny’ Cxx’ 0
r=R;R,=| C, Cn (8.7)
Cxx’ sz’ ny’ sz/
Cyy Coy 7

Note that when 5 = 90° or § = 270° global coordinates of the 2-node beam element
change only along z thus the vector rotation matrix takes a special form as

0 0C,»
r= 0 10 (8.8)
—C,v0 0
for z > z; or 8 =90°, C, = 1, otherwise for z; > z or § = 270°, C,, = —1. If

the extra beam rotation « is included, its rotation matrix is

1 0 0
R, =]0cosa —sina (8.9)
0 sina cos«

Finally the vector rotation matrix becomes

r —= RQR[}Rn,

. Cxx’ . ny’ sz’

CivCopsina—Cypcosa CypCoposina+ Cyypcosa .
- —C,ysina

= ny . ny .
—C,yCovcosa+ Cypsina —CypC o cosa+ Crp sina
: Cyycosa
Cyy Cyy

(8.10)

Special case of vertical members (3 = 90° and § = 270°) can be derived for the
present case also as

0 0 Cuv
r=| C,osina cosa 0 (8.11)
—C,rcosa sina 0

126 8 Bernoulli 3D Frames

obviously for o = 0 the previous case (8.8) is obtained.

For the sake of simplicity in the following members without « orientation are
considered (e.g. beams of circular cross section). The interested reader can easily
extend the codes using the aforementioned rotation matrices taking into account the
rotation a.

8.3 Stiffness Matrix and Vector of Equivalent Nodal Forces

In the local coordinate system, the stiffness matrix is given by

£ o o o o o -EA o 0 0 0 0
12LE31Z 0 0 0 elez 0 12L531Z 0 0 0 szlz
REL, , _6EL, 0 REL 6EL,)
L3 12 X T2
S 0 o0 o0 0 0o -9 o 0
L 0 0 6Ely o 2ELy 0
L 2 L
, 4EL; o _6EL LO 0 0 2EI;
K= Yoo 52 0 0 0 g (8.12)
T
|2LE31Z 0 0 0 —6L521Z
REly o OElL 0
L3 L2
GJ
Tz [0 0
4Ely 0
L 4EL;
L sym L -

After transformation to the global axes, the stiffness matrix in global coordinates is
obtained as

K = R’K'R
where the rotation matrix R is defined as

r000
0ro00
R=|00r0 (8.13)

000r

being r as indicated in (8.7) or (8.10). The latter has not been coded in the present
book for the sake of simplicity (o = 0) but it can be easily introduced by the reader.

The two-node 3D frame element has six degrees of freedom per node. Once the
static problem is solved (nodal displacements carried out) it is possible to calculate
the reactions at the supports by

F = KU (8.14)

where K and U are the structure stiffness matrix and the vector of nodal displacement,
respectively. The element nodal forces can be evaluated by axes transformation as

8.3 Stiffness Matrix and Vector of Equivalent Nodal Forces 127
f, = K'RU, (8.15)

where f, is the element nodal forces vector and U, is the global vector of displace-
ments referred to the element e.

8.4 Mass Matrix

In case of free vibration analysis the consistent mass matrix in the local coordinate
system is defined as

1400 0 0 0 0 70 0 0 0 0 0
156 0 0 0 22 0 54 0 0 0 —I3L
156 0 —22L 0 0 0 54 0 13L 0
4002 0 0 0 0 0 702 0 0
412 0 0 0 —-13L 0 -3L% 0
r_ pAL 412 0 13L. 0 0 0 -—3L2 8.16
- 420 140 0 0 0 0 0 (‘)
156 0 0 0 -22L
156 0 22L 0
140,20 0
412 0
| sym 412 i

where rf =(I y’ + 1)/ A where 1| and I are the second moment of area of the cross-
section about the principal y’ and 7" axes. Whereas the lumped mass matrix is given
by

1000000000007

10000000000

1000000000

r200000000

00000000

, _ pAL 0000000
M== 100000 ®.17)

10000

1000

rfOO

00

| sym 0 |

The mass matrix in the global coordinate system takes the form

M =R"M'R (8.18)

where the rotation matrix R is defined in (8.13).

128 8 Bernoulli 3D Frames

2

4 m

z

Fig. 8.2 A 3D frame example (problem12.m)

8.5 First 3D Frame Problem

The first 3D frame example is illustrated in Fig.8.2. We consider £ = 210 GPa,
G=84GPa,A=2-102m%1,=1-10*m* I,=2-10"*m* J =0.5-10"*

m?

Code problem12.m solves this problem, and calls function formStiffness
3Dframe.m, that computes the stiffness matrix of the 3D frame element.

8.5 First 3D Frame Problem

Listing of formStiffness3Dframe.m:

8 Bernoulli 3D Frames

8.5 First 3D Frame Problem 131

Results are listed as follows.

Displacements
node U
1 -0.00000706
2 -0.00000006
3 0.00001063
4 0.00000109
5 0.00000088
6 0.00000113
7 0.00000000
8 0.00000000
9 0.00000000
10 0.00000000
11 0.00000000
12 0.00000000
13 0.00000000
14 0.00000000
15 0.00000000
16 0.00000000
17 0.00000000
18 0.00000000
19 0.00000000
20 0.00000000
21 0.00000000
22 0.00000000
23 0.00000000
24 0.00000000

8.6 Second 3D Frame Problem

The next 3D problem is illustrated in Fig. 8.3 and considers £ = 210 GPa, G = 84
GPa,A=2-102m%* I, =1-10*m*" I, =2-10"*m*, J =0.5-10~* m*. The
MATLAB code for this problem is problem13.m.

% MATLAB codes for Finite Element Analysis
% probleml3.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear

8 Bernoulli 3D Frames

8.6 Second 3D frame problem 133

2Z = U(3:6:6*numberNodes) ;
scaleFact = 500;

hold on
drawingMesh (nodeCoordinates+scaleFact* [XX YY ZZ],elementNodes, ...
‘L2, 'k.");

drawingMesh (nodeCoordinates, elementNodes, ‘L2’ , 'k.--") ;
axis equal

set (gca, 'fontsize’,18)

view(170,-45)

% plot interpolated deformed shape acoording
% to Lagrange and Hermite shape functions
drawInterpolatedFrame3D

Results are obtained as:

Displacements
node U

1 .00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

P O W o Jo Ul WD
O OO O OO OO o oo

=

z

Fig. 8.3 A second 3D frame example (problem13.m)

134

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

The deformed shape of this structure is depicted in Fig. 8.4.

O O O OO OO O oo oo

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00039898
.00000298
.00058935
.00003552
.00035809
.00004453
.00212492
.00000684
.00058935
.00003552
.00035809
.00022176
.00213205
.00000684
.00058935
.00003552
.00035940
.00022305
.00039898
.00000298
.00058935
.00003552
-0.

0.

00035940
00004455

8 Bernoulli 3D Frames

The results for the present case are compared to the solution carried out by a
commercial finite element code and listed in Table 8.1, where u, u, and u3 are the
translational displacements along x, y and z, respectively, while uy4, us and ug are
the rotations (in radians) about x, y and z, respectively. Good agreement is observed

8.6 Second 3D frame problem

Fig. 8.4 Deformed shape for problem 13

135

Table 8.1 Comparison in terms of displacements and rotations (all multiplied by -10%) of the 3D
frame in problem13.m

Node 5 Node 6 Node 7 Node 8

Ref Present Ref Present Ref Present Ref Present

—3.9898 | —3.9898 | —21.2492 | —21.2492 | —21.3205 | —21.3205 | —3.9898 | —3.9898
uj

—0.0298 | —0.0298 —0.0684 | —0.0684 0.0684 0.0684| 0.0298 0.0298
u

—5.8935 | —5.8935 —5.8935 | —5.8935 5.8935 5.8935| 5.8935 5.8935
u3

—0.3552 | —0.3552 —0.3552 | —0.3552 0.3552 0.3552| 0.3552 0.3552
u4

—3.5809 | —3.5809 —3.5809 | —3.5809 | —3.5940 | —3.5940 | —3.5940 | —3.5940
us

0.4453 0.4453 2.2176 2.2176 2.2305 2.2305| 0.4455 0.4455

ue

between the two solutions. It is recalled that the solution is exact in the nodes and
approximated through interpolation functions (Lagrange for axial displacements and
Hermite for transverse displacements) along the beams.

136 8 Bernoulli 3D Frames

8.7 3D Frame in Free Vibrations

The present problem considers the structure in Fig.8.3 without external applied
forces and considers E =210 GPa, G = 84 GPa, A =2-102m?, [, =1-107*
m* I.=2-10"*m* J =0.5-10"* m* and p = 7850 kg/m>. The MATLAB code
for this problem is problem13vib.m.

8.7 3D Frame in Free Vibrations

Listing of formMass3Dframe.m is given below

8 Bernoulli 3D Frames

Note that both consistent and lumped mass matrices are given, they have to be
commented and uncommented according to the reader’s needs.

The first four natural frequencies are compared to the ones given by a commercial
code and listed in Table 8.2. As expected by using a lumped mass matrix the error
on the natural frequency is larger because more finite elements has to be used in the
computation.

8.7 3D Frame in Free Vibrations

Table 8.2 First four natural frequencies of the 3D frame in problem13vib.m

139

Ref Consistent Error (%) Lumped Error (%)

w1 43.3481 43.4457 0.23 40.7301 —6.04
wy 57.7971 57.9639 0.29 48.5147 —16.06
w3 59.1716 59.3490 0.30 53.9221 —8.87
w4 117.5250 118.6686 0.97 100.2990 —14.66
4

2 |

0 |

4|

2 |
0 {

Fig. 8.5 First four mode shapes for problem13vib.m

The first four mode shapes (for a consistent mass matrix) of this structure are
shown in Fig.8.5.

Chapter 9)
Grids %f:jetjc;efgr

Abstract In this chapter we perform the static analysis of grids, which are planar
structures where forces are applied normal to the grid plane. In other words, the grid
element is analogous to the 2D frame element where the axial stiffness is replaced
by the torsional one.

9.1 Introduction

In this chapter we perform the static analysis of grids, which are planar structures
where forces are applied normal to the grid plane. In other words, the grid element
is analogous to the 2D frame element where the axial stiffness is replaced by the
torsional one.

At each node a transverse displacement and two rotations are assigned. The stiffness
matrix in local cartesian axes is given by

- 12E1 6EI 12EI 6EI T
L o
GJ GJ
0 0 0 - 0
L, L,
6EI [4EL _6EI ' 2EI
K=| L L, L L. 9.1
=| 12EI 6EI 12ET 6EI ©-1)
— 0 —— == 0 =
L} Lz L L?
GJ GJ
0 -2~ o0 0 0
L, L,
6EI ° 2EI _6EI AEI
| L2 L, L2 L,

where E is the modulus of elasticity, I is the second moment of area, J the polar
moment of inertia, and G the shear modulus. The element length is denoted by L,.

© The Editor(s) (if applicable) and The Author(s), under exclusive 141
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_9

142 9 Grids

z

Fig. 9.1 A typical 2-node grid element

We consider direction cosines C = cos 6 and S = sin 6, being 6 the angle between
global axis x and local axis x’. The rotation matrix is defined as

100000
0C SO0O0O0
0-SCco0 00

R=100010 0 ©2)
00 00C S
00 00-SC

The stiffness matrix in global cartesian axes is obtained as

K=R’KR (9.3)

Six degrees of freedom are linked to every grid element, as illustrated in Fig.9.1.
After computing displacements in global coordinate set, we compute reactions by

F = KU (9.4)

where K and U is the stiffness matrix and the vector of nodal displacements of the
structure, respectively. Element forces are also possible to compute by transformation

f, = K'RU, (9.5)

where f, is the element nodal forces vector and U, is the global vector of displace-
ments referred to the element e.

9.2 First Grid Problem 143

3
10kN
1 1
Yy 4m
z
3 2
x 9 | 3m | 3m
I I
z

Fig. 9.2 A first grid example, problem14.m

9.2 First Grid Problem

The first grid problem is illustrated in Fig.9.2. The grid is built from two elements,
as illustrated. Given E = 210 GPa, G =84 GPa, [=20-10° m* J =5-107°
m*, the MATLAB problem14.m computes displacements, reactions and stresses.

The code for computing the stiffness matrix of the grid element is listed below.

9.2 First Grid Problem

The code for computing the forces in elements is listed below.

Results for displacements, reactions and forces in elements are listed below.

146

Displacements

ans =

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

O o0 J o Ul idbh WDN B

reactions

ans =

1.0e+04

.0004
.0005
.0006
.0007
.0008
.0009

O O O O O o

-0.

-0.

NP, ONMNRE O

0048

0018

o O O O o

.5000
.3891
.0000
.5000
.3891
.0000

forces in elements

EF =

1.0e+04 *

-0.5000
-0.0888
-0.0666
0.5000
0.0888
-2.4334

O OO NOoO O

.5000
.0888
.4334
.5000
.0888
.0666

9 Grids

Comparison in terms of displacements at node 1 with a commercial finite element

code gives the displacements listed in Table 9.1.

9.3 Second Grid Problem

147

Table 9.1 Comparison in terms of displacements and rotations (all multiplied by -10%) of the grid
in problem14.m

Node 1 Ref Present
w —4.7622 —4.7622
Oy 0.0000 0.0000
0, —1.7611 —1.7611
T
J4 1
— 9
3
4 m
2 20 kN 4
Y
z
— o——
1 3 2
xX ‘ 4 m ‘
| \
z

Fig. 9.3 A second grid example, problem15.m

9.3 Second Grid Problem

The second grid problem is illustrated in Fig.9.3. The grid is built from three
elements, as illustrated. Given E =210 GPa, G =84 GPa,] =20- 107> m?,
J =5-107° m*, the MATLAB problem15.m computes displacements, reactions
and stresses.

% MATLAB codes for Finite Element Analysis
$ probleml5.m
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory

clear

% E: modulus of elasticity

148 9 Grids

Results for displacements, reactions and forces in elements are listed below.

Displacements

ans =
1.0000 -0.0033
2.0000 0.0010
3.0000 -0.0010
4.0000 0
5.0000 0
6.0000 0
7.0000 0
8.0000 0
9.0000 0

9.3 Second Grid Problem

10.0000
11.0000
12.0000

reactions

ans =

1.0e+04

.0004
.0005
.0006
.0007
.0008
.0009
.0010
.0011
.0012

O O O OO OO oo

o

.0794
.1019
L1776
.1587
.4030
.4030
.0794
L1776
.1019

forces in elements

EF =

1.0e+04 *

-1.0794
-0.1019
-1.1398
1.0794
0.1019
-3.1776

.1587
.0000
.5699
.1587
.0000
.4679

R OPRr Wo K

.0794
.1019
L1776
.0794
.1019
.1398

149

Chapter 10 ®)
Timoshenko Beams Becit

Abstract Unlike the Bernoulli beam formulation, the Timoshenko beam formula-
tion accounts for transverse shear deformation. It is therefore capable of modeling
thin or thick beams. In this chapter we perform the analysis of Timoshenko beams
in static bending, free vibrations and buckling. We present the basic formulation and
show how a MATLAB code can accurately solve this problem.

10.1 Introduction

Unlike the Bernoulli beam formulation, the Timoshenko beam formulation accounts
for transverse shear deformation. It is therefore capable of modeling thin or thick
beams. In this chapter we perform the analysis of Timoshenko beams in static bend-
ing, free vibrations and buckling. We present the basic formulation and show how a
MATLAB code can accurately solve this problem.

10.2 Static Analysis

The Timoshenko theory assumes the deformed cross-section planes to remain plane
but not normal to the middle axis. If the beam lays in the x — z plane the displacement
field is defined as

ui(x,z,t) =z0,(x, 1), us(x,z,t) =wlx,1) (10.1)

where u; and u3 are the axial and transverse displacements of the three-dimensional
fibers of the beam; w and 6, denote the kinematic parameters of the theory as constant
transverse displacement and rotation of the cross-section plane about a normal to the
middle axis x.

© The Editor(s) (if applicable) and The Author(s), under exclusive 151
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_10

152 10 Timoshenko Beams

Normal €, and transverse shear strains v, are defined as

_ 3u1 _ 89)
“= o =i (102
Ou; Ous ow
e R R e 10.
=, + Ox Oy + 0z (10.3)

The strain energy considers both bending and shear contributions,
1 1
U= —/ oy 6xdV + —/ TazVazdV (10.4)
2 Jy 2 Jy
where the normal stress is obtained by the Hooke’s law as
oy = Ee, (10.5)

and the transverse shear stress is obtained as

Tyz = kGryx; (10.6)
being G the shear modulus
E
G=——-— (10.7)
2(1 +v)

and k the shear correction factor. This factor is dependent on the cross-section and
on the type of problem. Generally it is considered as 5/6 and this value will be used
in the computations. Considering dV = d A dx and integrating in the cross-section,
we obtain the strain energy in terms of the generalized displacements

1 2 1 2
U==|[EecdV+ = | kGvy.,dV =
2Jy 2 Jv)

1 [¢ 90, * 1 [e ow 2
E[uEI\<ax> dx+§/;akGA(a—x+(9y> dx

(10.8)

Each node of this 2-node element considers one transverse displacement, w and one
rotation ¢y, as illustrated in Fig. 10.1.
Thus, the displacement vector is

u’ = [w; ws 6y 6,5] (10.9)

10.2 Static Analysis 153

Fig. 10.1 Timoshenko beam element: degrees of freedom of the two-noded element

In opposition to Bernoulli beams, here the interpolation of displacements is inde-
pendent for both w and 6,

w = Nw* (10.10)
0y = N6 (10.11)

So the displacement vector becomes
u’ = [w 6] (10.12)

where the shape functions are defined as
N=[11-9 1a+9] (10.13)

in natural coordinates £ € [—1, +1]. We can now compute the stiffness matrix as

1 eT ¢ 1T N/ e
U =6 /_ EILNTN dx 0%+

1 a
3 [kGA (WN' + 6°N)" (N'w +NO%) dx (10.14)

a

dN

where N’ = e Coordinate transformation is applied to have the integrals in natural
X

coordinates as

1 eT 1E1}‘ 1T N/ e
U = Ub+UX :an . a_zN N (ldg 0y+

1! 1 T
5/ kGA (—weN’—l—H‘;N) <—N’we+N0i> ad¢ (10.15)
_ a -

1 a

154 10 Timoshenko Beams

U, is the bending part (first term) of the stiffness matrix and it can be easily computed
from (10.15). On the contrary, the shear term U, should be reordered as

14

1 : e ge 1l lN/ ! 1N/ w
Uszzf_kGA[w 01 | & [IN'N] o ad§

1

1 ! N1
:—uT/ kGA | g [IN'N]ad¢u (10.16)
2) N a
1, LNTN INTN
= Eu [1 kGA [ENTN/ NN adu

Finally, the strain energy becomes

1 . (" (ELL[O 0 kGA [NTN' aN"N
U= Ju /_] <7 [0 N/TN/] + P |:aNTN/ a2NTN:|> d§u (10.17)

Therefore the stiffness matrix for a generic element (size 4 x 4) is

e ! EI, [0 0 kGA N/TN/ ClN/TN
k= /1 (7) [0 N’TN/} Tt [aNTN’ a2NTN]) d¢ (10.18)

The exact integration of the linear element stiffness matrix is strongly not recom-
mended due to shear locking in thin beams [1]. Established suggestion is to the
compute the bending stiffness exactly via 2 points Gauss quadrature and the shear
part is calculated using reduce integration (single point Gauss quadrature in this
context) [2—4]. This is only one possible solution. An alternative is to employ shape
functions for the transverse displacement of higher order with respect to the rota-
tions (e.g. quadratic shape functions for the displacements and linear for the rotations,
the correspondent stiffness matrix is 5 x 5). Note that superconvergent Timoshenko
beam element (exact solution in the nodal points and approximated elsewhere) is
given by cubic polynomials for the transverse displacement and quadratic for the
rotation, the correspondent stiffness matrix, for this case, is 7 X 7.

To carry out static analysis the external work should be derived

Wi = / pwdx (10.19)
—a
by including finite element approximation it leads
a a T 1 T
Wi :wa/ pNTdx =ufT/ [‘ﬂ;]dx =ueT/ [pl(\: i|ad§ (10.20)
—a —a -1

so the force vector is given by

10.2 Static Analysis 155

1
fe = f [PI(TT] ad¢ (10.21)

1

Code problem16.m compute the displacements of Timoshenko beams in bending.
The code considers unitary beam width b = 1 so that the second moment of inertia
is I = bh*/12 = h3/12 and elastic modulus E = 10 and Poisson ratio v = 0.3.

10 Timoshenko Beams

The code calls one function formStiffnessMassTimoshenkoBeam.m which com-
putes the stiffness matrix, the force vector and the mass matrix of the 2-node Timo-
shenko beam (the computation of the mass matrix, relevant for free vibrations, will
be discussed later in this chapter).

10.2 Static Analysis

Timoshenko codes also call function shapeFunctionL2.m which computes
shape functions and derivatives with respect to &, see Sect. 3.5 for further details.
Distributed load p = 1 is uniform. The code is ready for simply-supported, clamped
conditions at both ends or cantilever boundary configurations. The user can easily
introduce new essential boundary conditions. A simply-supported Timoshenko beam

158 10 Timoshenko Beams

|
)

Fig. 10.2 Simply-supported Timoshenko problem, under uniform load, problem16.m

with reference symbols and geometry is depicted in Fig. 10.2. Timoshenko model is
able to analyze both thick or thin beams.

The present code is compared with exact solutions based on assumed first order
shear deformation theory [5]. The analytical solution for simply-supported (SS) Tim-
oshenko beam is

) = PL* [x 2x3 n x* n PL? [x x3 (1022)
W= up\L T Td) T s \L T 1B '
being S = kG A the shear stiffness, and D = %’iz) the flexural stiffness.
The analytical solution for cantilever (CF) Timoshenko beam is
) PL* 6x 4x3 n x* n PL? 2x x2 (10.23)
wk)=—|(6— — — + — — (2= - — .
24D L L3 L4 25 L L2

The maximum displacements for simply-supported (SS) Bernoulli beam is

5 pLt (10.24)
Whpar = — —— .
“ 384 EI
and for cantilever beam is
1 pL*
Whar = = —— (10.25)
8 EI

In Table 10.1 we compare the present solution obtained by MATLAB code and the
exact solutions by previous equations [5], for the maximum displacement of the given
structures. We consider 40 elements and analyze various £ /L ratios. From the table is
clear that deflections of the cantilever beam do not depend on the shear deformation
because the Bernoulli and Timoshenko solutions coincide.

10.3 Free Vibrations 159

Table 10.1 Comparation of maximum displacement for Timoshenko beam

h/L Exact [5] Present
SS Bernoulli 1.5584
0.001 1.5625 1.5609
0.01 1.5631 - 1073 1.5613 - 1073
0.1 1.6210- 107 1.5999 - 10~6
CF Bernoulli 15.0
0.001 15.0 15.0
0.01 0.0150 0.0150
0.1 1.5156 - 10~ 1.5156 - 10~

10.3 Free Vibrations

The kinetic energy considers two parts, one related with translations (pA) and one
related to rotations (rotary inertia ply), in the form

1 [e .
K = 5,/ pAu';zdx—I—E/ ply9§dx (10.26)

—a —a

By applying the aforementioned linear interpolation [6] and by introducing the
coordinate transformation in order to evaluate the integrals in natural coordinates the
kinetic energy becomes

1 ! 1 !
K = zw” f pANTN adé wé + EH;T / pI,N"N ad¢ 65 (10.27)
—1 -1

By collecting the terms of the displacement vector u it leads

[N’N 0 0 0
K_iu /—1 <pAa[0 0:|—|—plya |:0NTN:|>d£u (10.28)
The element mass matrix can be written as
M¢ = [pAaN'N 0 de¢ (10.29)
) 0 plyaN"N)

The stiffness matrix of the two-noded element has been carried out in the previous
Sect. 10.2.

The first problem considers a thin (L = 1, 2~ = 0.001) cantilever beam. The non-
dimensional natural frequencies are given by

160 10 Timoshenko Beams

Table 10.2 Comparing natural frequencies for cantilever isotropic thin beam, using code prob-
lem16vibrations.m

Mode Present Exact [60]
1 elem. 2 elem. 5 elem. 10 elem. 50 elem.

1 3.464 3.592 3.532 3.520 3.516 3.516

2 5,883,488 | 40.407 24.313 22.583 22.056 22.035

A
o =wL? |]’;—I (10.30)
y

Results for this clamped thin beam are presented in Table 10.2. Results are in excellent
agreement with exact solution [6].

10.3 Free Vibrations 161

% computation of the system stiffness, force, mass

[stiffness, force,mass] = ...
formStiffnessMassTimoshenkoBeam (GDof, numberElements,
elementNodes, numberNodes, xx,C, 0, rho, I, thickness) ;

boundary conditions (simply-supported at both ends)
fixedNodeW = [1 ; numberNodes];

fixedNodeTX = [];

boundary conditions (clamped at both ends)
fixedNodeW = [1 ; numberNodes];

fixedNodeTX = fixedNodeW;

% boundary conditions (cantilever)

fixedNodeWw = [1];

fixedNodeTX = [1];

prescribedDof = [fixedNodeW; fixedNodeTX+numberNodes] ;

o0 o° o° o° d° o

% free vibration problem
[modes, eigenvalues] = eigenvalue (GDof,prescribedDof, ...
stiffness,mass,0);

omega = sqgrt(eigenvalues) *L*L*sqrt (rho*A/E/I) ;
% display first 2 dimensionless frequencies
omega (1:2)

% drawing mesh and deformed shape
modeNumber = 4;
V1l = modes (:,1:modeNumber) ;

% drawing eigenmodes
figure
drawEigenmodes1D (modeNumber , numberNodes, V1, x)

Fig. 10.3 illustrates the first four modes of vibration for this beam (with v = 0.3),
as computed by code problem16vibrations.m, using 40 elements. This code calls
function formStiffnessMassTimoshenko.m, already presented in this chapter. The
code calls function drawEigenmodes1D.m which draws eigenmodes for this case.
The next example computes natural frequencies of a system suggested by Lee and
Schultz [7]. The shear correction factor is taken as 5/6. We consider beams clamped or
simply-supported at the ends. The non-dimensional frequencies are listed according
to A\, L, which is due to the exact natural frequency calculation by

EI EI
w=M[— =\,L)* (10.31)
pA pAL*

where)\, L takes the following forms according to the boundary conditions of the
beam. Cantilever beam: A\, L = w(2n — 1)/2; simply supported beam: \,L = nm;
clamped beam: A\, L = w(2n + 1)/2, where n represents the mode number.

Results are listed in Tables 10.3 and 10.4, and show excellent agreement with those
of Lee and Schultz [7]. Figures 10.4 and 10.5 illustrate the modes of vibration for
beams clamped or simply-supported at both ends (with v = 0.3), using 40 two-noded
elements.

162 10 Timoshenko Beams

L

L

o
o
o
©
-

L1

:60 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.3 First 4 modes of vibration for a cantilever beam

Table 10.3 Non-dimensional natural frequencies A, L for a Timoshenko beam clamped at both
ends (v = 0.3, k = 5/6, number of elements: N = 40)

Mode Ref. [7] h/L
0.002 0.01 0.1

1 4.73004 4.7345 4.7330 4.5835
2 7.85320 7.8736 7.8675 7.3468
3 10.9956 11.0504 11.0351 9.8924
4 14.1372 14.2526 14.2218 12.2118
5 17.2788 17.4888 17.4342 14.3386
6 20.4204 20.7670 20.6783 16.3046
7 23.5619 24.0955 23.9600 18.1375
8 26.7035 27.4833 27.2857 19.8593
9 29.8451 30.9398 30.6616 21.4875
10 32.9867 34.4748 34.0944 23.0358
11 36.1283 38.0993 37.5907 24.5141
12 39.2699 41.8249 41.1574 259179
13 424115 45.6642 44.8016 26.2929
14 45.5531 49.6312 48.5306 26.8419
15 48.6947 53.7410 52.3517 27.3449

10.3 Free Vibrations 163

Table 10.4 Non-dimensional natural frequencies A, L for a Timoshenko beam simply-supported
at both ends (v = 0.3, k = 5/6, number of elements: N = 40)

Mode Ref. [7] h/L
0.002 0.01 0.1
1 3.14159 3.1428 3.1425 3.1169
2 6.28319 6.2928 6.2908 6.0993
3 9.42478 9.4573 9.4503 8.8668
4 12.5664 12.6437 12.6271 11.3984
5 15.7080 15.8596 15.8267 13.7089
6 18.8496 19.1127 19.0552 15.8266
7 21.9911 224113 22.3186 17.7811
8 25.1327 25.7638 25.6231 19.5991
9 28.2743 29.1793 28.9749 21.3030
10 31.4159 32.6672 32.3806 229117
11 34.5575 36.2379 35.8467 24.4404
12 37.6991 39.9022 39.3803 25.9017
13 40.8407 43.6721 42.9883 26.0647
14 43.9823 47.5605 46.6780 26.2782
15 47.1239 51.5816 50.4566 26.8779
5 T T T * T T T

) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.4 First 4 modes of vibration for a beam clamped at both ends

164 10 Timoshenko Beams

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.5 First 4 modes of vibration for a beam simply-supported at both ends

Code (problem16vibrationsSchultz.m) considers a number of boundary condi-
tions the user should change according to the problem.

10.4 Buckling Analysis 165

10.4 Buckling Analysis

The work (energy) due to the applied compression load is

a 2
W, = %/_ 2 (g—';’) dx (10.32)

166

Table 10.5 Ceritical loads using 40 elements

10 Timoshenko Beams

L/h SS CC
Exact [8] Present Exact [8] Present
10 8013.8 8021.8 29,766 29,877
100 8.223 8.231 32.864 32.999
1000 0.0082 0.0082 0.0329 0.0330
The finite element approximation is applied
1 eT ! P 1T N/ e
W, =-w —N"Nad¢ w (10.33)
2 -1 a?
The relation is written in terms of the displacement vector
1Ly (' PINTNO
Wg_iu /;1;[0 0 déu (10.34)
Thus, the geometric stiffness matrix is
1
P[NTN 0
K, = [1 " |: 0 0:|d§ (10.35)

The buckling analysis of Timoshenko beams considers the solution of the eigen-

problem
[K —)\Kg] X=0

where)\ are the critical loads and X the buckling modes.

(10.36)

We now consider simply supported (SS) and clamped (CC) beams. The exact

solution [8] is

Pcr=

w2 El |:

2 El r
Lgff

L2kGA

(10.37)

where L. is the effective beam length. For pinned-pinned beams (L. = L) and for

fixed-fixed beams (L = L/2).

Table 10.5 shows the buckling loads for SS and CC Timoshenko beams. Results
are in excellent agreement with those of Bazant and Cedolin [8].
Code problem16Buckling.m is listed below and calls function formStiffness-
BucklingTimoshenkoBeam.m to compute the stiffness matrix and the geometric

stiffness matrix.

10.4 Buckling Analysis

10 Timoshenko Beams

Code formStiffnessBucklingTimoshenkoBeam.m follows next.

10.4 Buckling Analysis 169

gaussLocations = 0.;
gaussWeights = 2.;

for e = l:numberElements

indice = elementNodes (e, :);
elementDof = [indice indice+numberNodes] ;
ndof = length (indice) ;
length_element = xx(indice(2))-xx(indice (1)) ;
detJ0 = length_element/2; invJd0=1/detJO;
for g = 1l:size(gaussWeights, 1)

pt = gaussLocations(qg, :);

i

[shape,naturalDerivatives] = shapeFunctionL2 (pt (1)) ;
Xderivatives = naturalDerivatives*invJacobian;

% B

B = zeros(2,2*ndof) ;

B(2,1:ndof) = Xderivatives(:)’;
B(2,ndof+1:2*ndof) = shape;

% K

stiffness (elementDof, elementDof) =
stiffness(elementDof, elementDof) +

B’ *B*gaussWeights (g) *detJacobian*C(2,2) ;
end
end

end

Figures 10.6 and 10.7 illustrate the first four buckling loads for simply-supported

and clamped Timoshenko beams, respectively. Both beams consider L/ h = 10, and
v =0.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.6 First 4 modes of buckling for simply supported Timoshenko beam

170 10 Timoshenko Beams

-0.2 b

0.4 I I I I 1 I I I I

0.2 T T T T T T T T T

o/\/

0.2 I I I I I I I I I

0 T T T T T T T T
-0.1 b

02 1 1 1 1 1 1

0.2 T T T T T T T T T

_02 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10.7 First 4 modes of buckling for clamped Timoshenko beam

References

1. J.N. Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill International
Editions, New York, 2005)

2. K.J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice Hall, Upper Saddle
River, 1982)

3. E. Onate, Calculo de estruturas por el metodo de elementos finitos (CIMNE, Barcelona, 1995)

4. R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt, Concepts and Applications of Finite Element
Analysis (Wiley, New York, 2002)

5. C.M. Wang, J.N. Reddy, K.H. Lee, Shear Deformable Beams and Plates (Elsevier, Amsterdam,
2000)

6. M. Petyt, Introduction to Finite Element Vibration Analysis (Cambridge University Press, Cam-
bridge, 1990)

7. J.Lee, W.W. Schultz, Eigenvalue analysis of timoshenko beams and axisymmetric mindlin plates
by the pseudospectral method. J. Sound Vib. 269(3—4), 609-621 (2004)

8. Z.P. Bazant, L. Cedolin, Stability of Structures (Oxford University Press, New York, 1991)

Chapter 11 ®)
Plane Stress Chack or

Abstract This chapter deals with the static and dynamic analysis of 2D solids, par-
ticularly in plane stress. Plane stress analysis refers to problems where the thickness
is quite small when compared to other dimensions in the reference plane x—y. The
loads and boundary conditions are applied at the reference or middle plane of the
structure. In this chapter we consider isotropic, homogeneous materials four-node
(Q4), eight-node (Q8) and nine-node (Q9) quadrilateral elements.

11.1 Introduction

This chapter deals with the static and dynamic analysis of 2D solids, particularly
in plane stress. Plane stress analysis refers to problems where the thickness is quite
small when compared to other dimensions in the reference plane x — y. The loads
and boundary conditions are applied at the reference or middle plane of the struc-
ture. Displacements are computed at the reference plane. The stresses related with z
coordinates are assumed to be very small and not considered in the formulation. The
plane strain is analogous to plane stress where the solid is considered as “indefinitely
long”. Between the two problems only the constitutive matrix is different, therefore
for the sake of brevity plane strain is not presented here. In this chapter we consider
isotropic, homogeneous materials four-node (Q4), eight-node (Q8) and nine-node
(Q9) quadrilateral elements.

The problem is defined in a convex domain £2 bounded by I', as illustrated in
Fig. 11.1.

11.2 Displacements, Strains and Stresses

The plane stress problem considers two global displacements, u and v, defined in
global directions x and y, respectively.

© The Editor(s) (if applicable) and The Author(s), under exclusive 171
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_11

172 11 Plane Stress

Fig. 11.1 Plane stress: Ia
illustration of the 2D domain
§2 and its boundary I”

Y
| .
u(x,y) = [Zgi” (11.1)

Strains are obtained by derivation of displacements

- ou -
Ox
Ex v
ex,y)=1| ¢ | = a_y (11.2)
Vxy
ou Ov
[9y " ox |

By assuming a linear elastic material, we obtain stresses as

- E vE 7
1—02 1 -2
Ox €x
o=|o0, |=Ce=| VE E 0 €y (11.3)
Ty 1—22 1—-12 Yy
| 0 0 G|
where E is the modulus of elasticity, v the Poisson’s coefficient and G = m
v
is the shear modulus. C the elastic constitutive matrix.
The static equilibrium equations are defined as
Joy 0Ty
+ +b,=0 11.4
ox dy (11.4)
0Ty~ Ooy
+—4+0b,=0 11.5
0x oy y (11.5)

where by, b, are body forces.

11.3 Boundary Conditions 173

11.3 Boundary Conditions

Essential or displacement boundary conditions are applied on the boundary displace-
ment part [, as

u=1u (11.6)
Natural or force boundary conditions are applied on I, so that
o, =t (11.7)

where t is the surface traction per unit area, and o, the normal vector to the plate
boundary.
If necessary, o, can be computed according to Cartesian components of stress by

0oy
S |:axnx —i—Txyny:| _ [nx 0 ny:| o (11.8)
Tx

Teylx + 0oyny 0 nyn,
where n, and n, are the Cartesian components of the unit normal vectors to the
surface.
11.4 Hamilton Principle

The total potential energy can be defined as
N=U+ Vg (11.9)
where U is the elastic strain deformation,
1 T 1 T
U==| heeod2 == | he'Ced$2 (11.10)
2Je 2Je
The energy produced by the external domain and boundary forces is given by
VE:—WE:—f ha'bd2 — | ha"tdr (11.11)
2 I

where £ is the unitary thickness of the 2D domain. The kinetic energy is defined as

1 . 1 -
K== [pa"udv =-h [paTads (11.12)
2 Jy 2 Ja

174 11 Plane Stress

The Hamilton principle reads

5]
5/ (K—-T)dt =0
1

/hpéilTﬁd.Q—/ hoe’ Ce dQ—i—/ h(Sude.Q—i-/ hou'tdr =0
2 2 2 t

(11.13)

11.5 Finite Element Discretization

Given a domain denoted by £2¢ and a boundary denoted by I'“, the n-noded finite
element displacement vector is defined by 2n degrees of freedom,

uez[ul Uy ..U, Vi ...v,,]T (11.14)

where n is due to the number of grid nodes per element used in the approximation.
For instance for Q4 element the finite element displacement vector is

uez[ul Uy U3 Uy VI Uy U3 v4]T (11.15)

11.6 Interpolation of Displacements

The displacement vector in each element is interpolated by the nodal displacements
as

u:Xn:Nfui; v:Xn:vai (11.16)
i=1 i=1

where N{ denote the element shape functions. This can also be expressed in matrix
form as

L [NENs N0 00
10 0...0 NN¢LLNE

i|u" = Nu* (11.17)

where N is the matrix of the shape functions which is needed for computing the stress
at each element and for evaluating boundary tractions as shown below. The strain
vector can be obtained by derivation of the displacements according to Eq. (11.2) as

11.6 Interpolation of Displacements 175

CONS ONS ON? .
Ox Ox = Ox

ONS ON{ ONC

3 9y " oy

u’ = Bu® (11.18)

ON¢ ON{ ON® ON® ON{ ON°
L 0y Oy =~ 0y Ox Ox = Ox

where B is the strain-displacement matrix. This matrix is needed for computation of
the stiffness matrix.

11.7 Element Energy
The total potential energy can be defined at each element by
° =U°+ Vg (11.19)
where the strain energy is defined as
U¢ = %/)heTCe dfe = %ueT/ hBTCB d2°u’ (11.20)
where £ is the plate thickness and the element stiffness matrix is obtained as
K¢ =/ hBTCB d2°¢ (11.21)
The energy produced (external work) by body forces and boundary tractions is given

by
VE=-Wg = —u“Tf ANTb d2¢ — ueT/ ANTtdIe (11.22)

e

where the vector of nodal forces is obtained as
£ =/ hN"b d2¢ +/ ANt dre (11.23)
We can introduce these expressions into the total potential energy as

1
¢ = zueTKeue —uTte (11.24)

The kinetic energy defines the element mass matrix as

176 11 Plane Stress
1 cel T ece 1 . 0 . o
K = Eu hpN' N d2°u° = Eu My (11.25)

where the mass matrix is

M= | hpN'NdQ° (11.26)
e

Thus, the Hamilton’s Principle can be used to carry out dynamic equilibrium equa-
tions for the present 2D solid.

11.7.1 Quadrilateral Element Q4

We consider a quadrilateral element, illustrated in Fig. 11.2. The element is defined
by 4 nodes in natural coordinates (&, 7). The coordinates are interpolated as

4 4
x=) N y=) Ny (11.27)
i=1 i=1

where N; are the Lagrange shape functions, given by

1
Ni@€.m) =L©Oh(n) = 71 =HA —n) (11.28)
1
No(&.m) = b(©h() = A+ =) (11.29)
n n
4 3 4 3
o o o 0
§ §

(-, O o

1 2 1 2

Fig. 11.2 Quadrilateral Q4 element in natural coordinates with single point integration (£, 1) =
(0, 0) and two points integration (£,) = £(1//3, 1/+/3)

11.7 Element Energy 177

1
N3(&, n) = L(©hLxn) = 7+ Od+m (11.30)

1
Na(&.m) = L(©Oh0) = (1 =0 +mn) (11.31)

Note that this is the geometrical approximation of the domain. This is an important
aspect because the same shape functions are used here to approximate the unknown
field u and v as well as geometry. This finite element is known as isoparametric. How-
ever, it will be discussed in the following, that it is possible to implement geometry
approximation and unknown field variables with different shape functions.
Displacements are interpolated as

4 4
u=Yy Nuyi v=Y Ny (11.32)
i=1 i=1

where u, v are the displacements at any point in the element and u;, v; for i =
1, 2, 3, 4 are the nodal displacements.

Derivatives in natural coordinates —, 2, can be found as
o0& On
0 Ox Oy 0
¢ o0& ¢ Ox
= (11.33)
0 Ox Oy 9
an on On oy
In matrix form, we can write relations (11.33) as
0 0
— =J— 11.34
o€ J o ()

where J is the Jacobian operator, relating natural and global coordinates. The deriva-
tives with respect to the global coordinates can be found as

0 4 0
o o€ (11.35)
Note that in very distorted elements the Jacobian inverse, J~! may not exist. In other
words, matrix inversion becomes inaccurate because of matrix high conditioning
number.

Recalling the definition of the stiffness matrix for the generic element d$2¢ =
det Jd&dn, where det J is the determinant of the Jacobian matrix. The stiffness matrix
is then obtained by

178 11 Plane Stress

1 1 1 1
K= / f hBT CBdet Jdédn = h / / Fd¢dn (11.36)
—1J-1 —1J-1

where F = BT CB det J. Note that B, by definition (11.18), depends on the Cartesian
coordinates x, y but the element stiffness matrix (11.36) has to be integrated in natural
coordinates &, 7.

The integral in the stiffness matrix is computed numerically by Gauss quadrature
in two dimensions. Each integral is transformed as a weighted sum by the product
of weights and value of the function at the given nodes [1].

F has to be written as a function of the natural points (§;, ;) with coordinate
transformation. Integration points (&;, n;) and integration weights depend on the
type of integration the user wishes to perform. In the 4-node element we can use a
2 x 2 numerical integration for exact integration and a single point integration for
the reduced integration.

Thus, the element stiffness matrix with exact integration is

1 1 2 2
K° =h/ f B CBdetJ dédn=hY)_ Y B CBdet Juw;w, (11.37)
-1/l i=1 j=I

All Gauss points have unitary values, in this integration rule. The element stiffness
matrix with reduced integration (matrices are evaluated in (0, 0)) is

1 1
K‘ = h/ / B’ CB det J dédn = 4hB” CB det J (11.38)
—1J-1

recalling that for reduced integration the weight is w; = 2. Integration points are
depicted for the present element in Fig. 11.2.

The force vector due to body forces can be carried out using the aforementioned
procedure as

2 2

1 1
fe:h/ / N'b detJdédn =h NTb det Jw;w; (11.39)
[o =133 f

i=1 j=1

for the full integration case. For the sake of simplicity, natural boundary conditions
in the present book are derived upon integration of the boundary stress applied.

According to Eq. (11.11) the boundary tractions should be computed and applied
at nodes as

fe = / N'né dre (11.40)
where linear shape functions are needed on each element side for computing the

stress because Q4 element is considered. Using the local coordinate s starting from
corner node on each edge these shape functions take the form

11.7 Element Energy 179
N N

Pi(s) =1——, (s) = — (11.41)
a a

where a is the edge length. Thus, for an edge parallel to the axis y and a tension
along x constant p, boundary forces f = [f{ f¥]” become

(11.42)

The element mass matrix for Q4 element computed with full 2 x 2 Gauss quadra-
ture takes the form

1 1 2 2
M = f / hpN'Ndet J dédn = ") " hpN"Ndet Jw;w; (11.43)
—1J-1 i=1 j=I
whereas, reduced single point integration leads (matrices are evaluated in (0, 0))

1 1
M= f / hpN"Ndet J dédn = 4hpN'Ndet J (11.44)
—1J-1

11.7.2 Quadrilateral Elements Q8 and Q9

For the sake of conciseness the complete formulation for 8 nodes and 9 nodes ele-
ments is not repeated but only main expressions are reported. The reader can refer
to the previous section for missing details in the present one.

The Lagrange shape functions N; for 8 node elements are given by

Ni(&m) =-0251 -0 —nA+£+n)
Na€,m) = —0.25(1 + (1 — (1 — £ +1)
N3 (€, m) = —025(1 + &1 +m(1 — & —n)
Na&m) =-0251 - A+ +£—n)
Ns(&.m) =0.5(1 —&)(1 —n)
Ne(&.m) =051+ &1 —n’)
N7 (€. m) =0.5(1 — &)(1 +1n)
Ng(&.m) =051 -6 —n)

(11.45)

The shape function for Q9 are

180 11 Plane Stress
n n
4 7 3 4 7 3
[O o [~ O
8 Q Q@ 6 5 8 Q o @9 A\ 6 5
[, O] [, O
1 5 2 1 5 2

Fig. 11.3 Quadrilateral Q8 element in natural coordinates with two points (reduced) integration
(€,m) = £(1/+/3,1/+/3) and quadrilateral Q9 element in natural coordinates with three points
integration (£,) = (0, 0), (£, n) = £(V3/5,V3/5)

Ni(§,n) = —0.25§n — DH(n—1)

Na (€, m) = —0.25¢6n(E + D(n — 1)

N3(&,n) = —-0.25¢6nE+ D(n+ 1)

Ny(&.m) = —0.25¢n(E — D(n + 1)

Ns(&m) = 0.50(1 =€) (1 — 1) (11.46)
Ne(&,m) =056+ D1 —nP)

N7 (&, m) =0.5n(1 —)+ 1)

Ns(&.m) = 0.5 — D1 =1

No(&.m) = (1 —&HA =1

The element stiffness matrix

K‘=h B” CB det Jw;w; (11.47)
i=1 j=I

where p, g are the number of points for the integration 3 x 3 full integration and
2 x 2 reduced integration (see Fig. 11.3 for details).

Generally, full integration is used for the stiffness matrix computation and reduced
integration points (2 x 2) are used for the stress recovery in the post-computation
[1].

Body forces for Q8 and Q9 elements can be easily carried out following the pro-
cedure discussed for Q4. On the contrary the procedure for getting natural boundary

11.7 Element Energy 181

conditions for Q8 and Q9 is discussed below. For such elements quadratic shape
functions are needed on each element side, using the local coordinate s these shape

functions take the form
) 2s
by =(1-3) (1 = —)
a a

o (s) = 45(1 — i) (11.48)
a a
s s

bale) = == (1-22)

where a is the edge length. Thus, for an edge parallel to the axis y and a tension
along x constant p, boundary forces f¢ = [f{ f5¥ f{]1” become

. 4 pa
fi= [opds =2
0

2
% (11.49)

f;=/ Vap ds =

0

N a a

ffz/ vapds = 22
0 6

The element mass matrix for Q8 and Q9 element takes the form

1 1 14 q
M:/ / hpN'Ndet J dédn = hpNT N det Jw; w; (11.50)
], 2.2 j

i=1 j=1

where p, g are the number of points for the integration 3 x 3 full integration and
2 x 2 reduced integration.

11.8 Post-processing

Post-processing technique is fundamental for the stress recovery, since the formu-
lation is based on displacements. Stresses should be recovered in order to perform
structural design. Stresses are carried out from computed displacements, thus they
are derived quantities. The accuracy of such quantities is generally lower than pri-
mary variables (displacements). For an accuracy of the displacements of 1%, the
stresses might be accurate at 10% or lower at the boundaries [1].

To calculate the strain and stresses a loop over all the elements is performed. For
the eth element, the strains can be defined as

€ = Bu’ (11.51)

182 11 Plane Stress

and the stresses are
o = Ce = CBv’ (11.52)

The stresses are evaluated in the integration points of the elements. It is a good
practice to carry out stresses using 2 x 2 Gauss integration for all elements Q4, Q8
and Q9. Note that such post computation does not involve Gauss integration, this
solution is used for the practical way of computing stresses in 2D finite elements.

In the following element nodal point stresses are evaluated. Such stresses are not
generally the same among adjacent elements because stresses are not required to be
continuous in the finite element method.

In the applications, it is of interest to evaluate and report these stresses at the
element nodal points located on the corners and possibly midpoints of the element.
These are called element nodal point stresses. Therefore, stress averaging is applied
in order to improve stress accuracy.

Three approaches can be followed in order to recover stresses in finite elements:

1. Direct evaluation: stresses are carried out directly by substituting element nodal
locations in shape functions.

2. Stress extrapolation: stresses are evaluated at integration points and an extrap-
olation technique is used to carry out stresses at the nodal points.

3. Patch recovery: stress at a nodal point is assumed to be a polynomial expansion
of the same complete order of the shape functions used over an element patch
surrounding the current node.

The first approach won’t be discussed because it is straightforward. The second
one is given below.

11.8.1 Stress Extrapolation

Consider (£, 1) as natural coordinates of the current parent element and (é , 1) are the
coordinates of the same element defined by the four integration points of the 2 x 2
integration, the relationship between these sets of coordinates is

& =E /N3 or (€7 =EnV3 (11.53)

Stresses (o, 0y and 7y,) at any point P, termed o p, can be obtained as classical
interpolation using shape functions, which are evaluated at the coordinates of point
P as

11.8 Post-processing 183

0G1

4
o =) Nioa = [N M@ NED MED] |07 (1)
i=1

0G4

where og; are the stresses evaluated at the integration points and N; (é ,7) are the
shape functions evaluated in the reference system of the integration points. The
extrapolation can be applied by replacing each corner coordinates in the integration
points natural system using relations (11.53). For instance, the first shape function
N, at the first integration point (—+/3; —+/3) becomes

N, = %(1 — 381 —V3n) (11.55)

such shape function evaluated at the four corners of a parent Q4 element leads
[140.5V3 —0.51—0.5v/3 —0.5] (11.56)
this vector represents the extrapolation of the stress og; at the four corner points
of the parent Q4 element. If this operation is done for each integration point the

following relationship applies

o1 14053 —05 1-05J3 —05

0G1

o) —0.5 140543 —-05 1-05V3]|]0c
= (11.57)

o3 1-0543 —=05 14053 —05 063

o —0.5 1-0543 —05 1+05V3] [0cs

The same procedure shown in (11.54) can be extended to Q8 and Q9 elements
(shape functions do not change because stresses are evaluated using 2 x 2 integration
grid). For instance for QS8 elements it leads

"1 [1+05V3 —05 1-05/3 —05
o -05 14053 05 1-05V3
o3 1-05v3 —05 14053 —05 oG
o4 —05 1-05V3 —05 1405V3 | |0

o5 | =t v3)/a (A4 v3)/4a - VBAd—vayal|oe| TP

a6 (1 —~/3)/4 (1+/3)/4 1 ++/3)/4 (1 —/3)/4 | [ocs
o7 (1—+/3)/4 (1 =/3)/4 (1+/3)/4 (1 +/3)/4
L8] | (14+/3)/4 (1 —/3)/4 (1 =/3)/4 (1 +/3)/4

and for Q9 becomes

184

(o8]
o)
03
04
Os
06
o7
g
09

(140543 —-05 1-05V3 -05
—-05 1405J/3 —-05 1-0.5V3

1-05v3 =05 1405J3 -05
—05 1-05J3 —05 14053
(1+3)/4 (1 ++/3)/4 (1 —/3)/4 (1 —+/3)/4
(1=v3)/4 (1 +/3)/4 (1 +3)/4 (1 = V3)/4
(1—+/3)/4 (1 =V/3)/4 (1++/3)/4 (1 +/3)/4
(14++/3)/4 (1 =V/3)/4 (1 = /3)/4 (1 +/3) /4

0.25 0.25 0.25 0.25

11.8.2 Inter-element Averaging

11

0G1
0G2
0G3
0G4

Plane Stress

(11.59)

The previous approach shows jumps among elements. Therefore, a general “smooth-
ing” should be applied for the whole mesh. Obviously the aforementioned stresses
should be averaged at nodal stresses, in the following two ways

1. Unweighted averaging: the same weight is assigned to all elements that share a

node.

2. Weighted averaging: a weight is assigned to each element according to the stress
component, element geometry and (when applicable) element type.

Stress extrapolation and unweighted averaging are shown below for the simple
case of cantilever wall beam.

11.9 Plate in Traction

We consider a thin plate under uniform traction forces at its extremes. The problem
is illustrated in Fig. 11.4.

Isotropic material properties are given as E = 10%, Poisson ratio v = 0.3 and
applied pressure p = 10°. Plate length and width are indicated in Fig. 11.4 as L = 10

Fig. 11.4

10

Thin plate in traction, problem17.m

11.9 Plate in Traction 185

and W = 2. Due to the symmetry of the problem only one-fourth of the plate is
modeled. Analytically the maximum displacement expected should be

pL
=_ =0. 11.
Unmax ZA 0.05 (11.60)

Three MATLAB codes are provided for this problem using Q4 (problem17.m),
Q8 (problem17a.m) and Q9 (problem17b.m) elements.

11 Plane Stress

11.9 Plate in Traction

11 Plane Stress

11.9 Plate in Traction

11 Plane Stress

These codes have several supporting functions for stiffness matrix formation and
post computation analysis. Function formStiffnessMass2D.m forms the finite ele-
ment matrix according to the typology selected (Q4, Q8 or Q9) and Gauss integration
required.

11.9 Plate in Traction

Function shapeFunctionsQ.m computes the shape functions and their deriva-
tives with respect to natural £, 17 coordinates for Q4, Q8 and Q9 elements. Function
Jacobian.m computes the Jacobian matrix, and its inverse. The computation of

Gauss point locations and weights is made in function gaussQuadrature.m. The
listing of these functions is given below

11 Plane Stress

11.9 Plate in Traction

The post computation of the stress field is carried out in stresses2D.m which is
listed below.

194 11 Plane Stress

eta = pt(2);

% shape functions and derivatives

[shapeFunction,naturalDerivatives] = ...
shapeFunctionsQ (xi, eta,elemType) ;

% Jacobian matrix, inverse of Jacobian,
% derivatives w.r.t. X,y
[Jacob, invJacobian, XYderivatives] = ...

Jacobian (nodeCoordinates (indice, :) ,naturalDerivatives) ;
% B matrix
B = zeros(3,2*nn) ;
B(1l,1:nn) = XYderivatives(:,1)’;
B(2,nn+1:2*nn) = XYderivatives(:,2)"';
B(3,1:nn) = XYderivatives(:,2)";
B(3,nn+l:2*nn) = XYderivatives(:,1)’;

.

% element deformation
strain = B*displacements (elementDof) ;
stress(e,q,:) = C*strain;
end
end

end % end function stresses2D

Some functions included in the codes above will be used also for plate problems.

In Fig.11.5 we show the finite element mesh considering 10 x 5 elements. In
Fig. 11.6 the deformed shape of the problem is illustrated using Q4, Q8 and Q9 and
in Fig. 11.7 the stress distribution along the x axis is shown. Due to the constant state
of stress in the beam the normal stress o, field is constant in all the points of the
beam.

Note that stiffness matrix calculation for Q8 and Q9 have been carried out using
reduced 2 x 2 Gauss integration. The same integration is used for Q4 which results
in exact integration.

Small differences are shown in terms of displacements and stresses according to
the finite element used. However these differences are small among each other and
can be reduced by applying mesh refinement.

Fig. 11.5 Finite element
mesh for a thin plate in
tension

11.9 Plate in Traction

Displacement field u, (on deformed shape)

Displacement field u , (on deformed shape)

Displacement field u, (on deformed shape)

Fig. 11.6 Plate in traction using Q4, Q8 and Q9: displacement field u,

0.045

.04

0.035

0.03

0.025

002

0.015

0.0

0.005

0.05

0.045

0.04

0.035

0.03

0.025

002

0.5

o.M

0.005

0.05

0,045

.04

0.035

0.03

0.025

.02

0.M5

om

0.005

195

196 11 Plane Stress

Stress field o,, (on deformed shape) «10%
10.00000000000

10.00000000000
10.00000000000
10.00000000000

1000000000000

9.999999999999

9.999999999999
9999999950099
9.999999990999
9.999999999699

Stress field L. (on deformed shape) «10®

1000000000000
1000000000000
1000000000000
1000000000000

1.000000000000

0.999999999999
0.999999999999
0999999999999
0999999999999

0959999999909
Stress fleld L {on deformed shape) «10%

1000000000000
1000000000000
1.000000000000
1000000000000
1.000000000000

1.000000000000

0999999999999
0999999999999
0.999999990999

0.999999999999

Fig. 11.7 Plate in traction using Q4, Q8 and Q9: stress field o

11.10 2D Beam in Bending 197

Fig. 11.8 Thin plate in
bending, problem18.m

11.10 2D Beam in Bending

We show in this example (code problem18.m) a 2D beam in bending (Fig. 11.8).
Note some of the differences to problem17.m:

e Fixed boundary conditions are considered on the left edge (x = 0) of the plate for
both u and v.

e The constant applied force is in the y direction, so care must be taken to ensure
that degrees of freedom are properly assigned as well as lumped nodal forces on
such elements.

% MATLAB codes for Finite Element Analysis

% probleml8.m

% 2D problem: beam in bending using Q4 elements
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear; close all

% materials
E = 10e7; poisson = 0.30;

% matrix C
C = E/(l-poisson”2)*[1 poisson 0;poisson 1 0;0 0 (l-poisson)/2];

% load
P = le6;

% mesh generation
Lx = 5;
Ly = 1;
numberElementsX = 20;
numberElementsY = 10;
numberElements = numberElementsX*numberElementsY;
[nodeCoordinates, elementNodes] = ...
rectangularMesh (Lx, Ly, numberElementsX, numberElementsY, 'Q4") ;
xx = nodeCoordinates(:,1);
yy = nodeCoordinates(:,2);

figure;
drawingMesh (nodeCoordinates, elementNodes, 'Q4’', ' -') ;

11 Plane Stress

11.10 2D Beam in Bending 199

stressExtr(e,:,1i) = [1+0.5*sqgrt(3) -0.5 1-0.5*sqrt(3) -0.5;
-0.5 1+0.5*sgrt(3) -0.5 1-0.5*sqgrt(3);
1-0.5*sgrt(3) -0.5 1+0.5*sgrt(3) -0.5;
-0.5 1-0.5*sqgrt(3) -0.5 1+0.5*sqgrt(3)]1*...
[stress(e,1,i);stress(e,2,1);stress(e,3,1i);stress(e,4,1)];
end
end

% stress averaging at nodes
stressAvg = zeros (numberNodes, 3) ;
for i = 1:3
currentStress = stressExtr(:,:,i);
for n = 1l:numberNodes
idx = find(n==elementNodes) ;
stressAvg(n,i) = sum(currentStress(idx))/...
length (currentStress (idx)) ;
end
end

% surface representation
figure; hold on
for k = l:size(elementNodes, 1)
patch (nodeCoordinates (elementNodes (k,1:4),1), ...
nodeCoordinates (elementNodes (k,1:4),2), ...
nodeCoordinates (elementNodes (k,1:4),1)*0, ...
)

stressAvg (elementNodes (k,1:4),1))

end

axis equal; axis off

colorbar

title(’Averaged nodal stress field \sigma_{xx}’)

InFig. 11.9 we show the displacements field of u, on top of the deformed shape of the
beam. If the user wishes to plot another displacement, just change the displacement
component upon calling drawingField.m.

In Fig. 11.10 we show the stress field of o, in the beam according to its values
in the integration points. If the user wishes to plot another stress, just change the
number of the stress component upon calling drawingField2.m.

The analogous codes for Q8 and Q9 are not listed for the sake of conciseness.
The reader can inspect given codes problem18a.m and problem18b.m for Q8 and
Q9 element implementations.

The stress extrapolation and stress averaging is given in the last part of the codes for
Q4, Q8 and Q9 elements. These final routines implement directly the theory presented
in this chapter. For comparison, Table 11.1 list maximum o, in-plane stress evaluated
at the integration points and after extrapolation procedure. As expected, the numerical
values of the extrapolated stresses are higher than the same at integration points.

200 11 Plane Stress

Displacement field u, (on deformed shape)

06

0.4

o2

0.2

H
H
i-_ Py
I

HH

f

f

f

i ol

0.4

0.8

Displacement field u, {on deformed shape)

06

0.4

o2

0.2

0.4

0.8

Displacement field u, {on deformed shape)

06

0.4

0.2

0.2

0.4

0.8

Fig. 11.9 Plate in bending using Q4, Q8 and Q9: displacement field u,

11.10 2D Beam in Bending 201

Stress field o, (on deformed shape) %107

25

25

Stress field o,, (on deformed shape)

%107

Stress field L. (on deformed shape)

Fig. 11.10 Plate in bending using Q4, Q8 and Q9: stress field o

202

11 Plane Stress

Table 11.1 Maximum normal o, - 107 stresses evaluated at the integration points and after extrap-

olation
Q4 Q8 Q9
Integration points 2.9617 3.1072 3.0720
Extrapolation 3.1947 3.5688 3.5131

11.11 2D Beam in Free Vibrations

The present example shows the free vibration analysis of cantilever beam. The
same geometry of the previous example is considered (Fig.11.8 without applied
forces and p = 1000). The implementation using Q4 elements is listed in code prob-

lem18vib.m).

11.11 2D Beam in Free Vibrations 203

fixedNodeX = find(nodeCoordinates(:,1)==0); % fixed in XX
fixedNodeY = find(nodeCoordinates(:,1)==0); % fixed in YY
prescribedDof = [fixedNodeX; fixedNodeY+numberNodes] ;

% solution
[modes, eigenvalues] = eigenvalue (GDof, prescribedDof, ...
stiffness,mass, 15);

omega = sqrt(eigenvalues) ;
% sort out eigenvalues
[omega,ii] = sort (omega) ;
modes = modes(:,1ii);

% drawing mesh and deformed shape
modeNumber = 3;
displacements = modes (:,modeNumber) ;

% displacements and deformed shape

UX = displacements (1:numberNodes) ;

UY = displacements (numberNodes+1:GDof) ;
scaleFactor = 0.5;

% deformed shape

figure

drawingField (nodeCoordinates+scaleFactor* [UX UY],
elementNodes, 'Q4’,UX) ; %U XX

hold on

drawingMesh (nodeCoordinates+scaleFactor* [UX UY],
elementNodes, 'Q4’,'-");

drawingMesh (nodeCoordinates, elementNodes, 'Q4’,'--") ;

colorbar

title(’Displacement field u_x (on deformed shape) ')

axis off

The mass matrix is carried out in function formStiffnessMass2D.m. The eigen-
value problem is solved using eigenvalue.mused in 1D beam problems. The desired
mode shape can be represented by changing the value of the variable modeNumber.
The first three mode shapes of the beam modelled using Q4 elements are shown in
Fig. 11.11.

Note that the first two modes are flexural and the third one is axial. Codes for Q8
and Q9 elements are given by problem18avib.m and problem18bvib.m wherein
functions call are modified for such elements. These codes are not listed for the sake
of conciseness.

204 11 Plane Stress

Displacement field u, (on deformed shape)

= g i

r-
HH
HH
I
|
|
|
|
|
&

Displacement field u = (on deformed shape)

0.4

Displacement field u, {on deformed shape)

Fig. 11.11 First three mode shapes of a plate in free vibrations using Q4 elements: Displacement
field u,

11.11 2D Beam in Free Vibrations

Table 11.2 First five natural frequencies of cantilever beam

205

w Q4 Q8 Q9

1 12.6548 12.4847 12.4811
2 68.6069 67.4494 67.4243
3 99.6379 99.5644 99.5550
4 164.8584 161.0925 161.0303
5 276.9458 268.3379 268.2412

The comparison in terms of natural frequencies using the three implementations
is given in Table 11.2.

Reference

1. J.N. Reddy, An introduction to the finite element method, 3rd edn. (McGraw-Hill International
Editions, New York, 2005)

Chapter 12 ®)
Kirchhoff Plates greckie

Abstract In the present chapter finite element implementation of Kirchhoff plates
in bending is discussed using the so-called conforming and not conforming Her-
mite shape functions. Note that Hermite shape functions other than more common
Lagrange functions, that consider nodal parameters only, use more kinematic parame-
ters than the ones representing the displacement field of the mathematical differential
problem that is currently in use.

12.1 Introduction

The present Kirchhoff plate theory considers thin plates made of orthotropic materi-
als (the theory is valid also for isotropic ones). In the present chapter finite element
implementation of Kirchhoff plates in bending is discussed using the so-called con-
forming and not conforming Hermite shape functions. Note that Hermite shape func-
tions other than more common Lagrange functions, that consider nodal parameters
only, use more kinematic parameters than the ones representing the displacement
field of the mathematical differential problem that is currently in use. The classical
and easier beam problem directly comes into the mind. As a matter of fact, Bernoulli
beam in bending has displacement and rotation (as dw/dx) parameters at each bound-
ary node. If the beam has 2 nodes, this results in a finite element with 4 degrees of
freedom where the continuity among the elements is ensured up to the first order
derivative (due to the presence of the rotation in terms of first order derivative). The
same can be done for the Kirchhoff plates however kinematic approximation and
inter-element continuity should be assured according to 2 Cartesian directions x and
y. For this reason two approximations for the finite element analysis are generally
introduced a not conforming with 3 degrees of freedom (dof) and a conforming one
with 4 dofs per node (when the element is considered with 4 nodes). More details
regarding these implementations will be given below.

© The Editor(s) (if applicable) and The Author(s), under exclusive 207
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_12

208 12 Kirchhoff Plates

12.2 Mathematical Background
Kirchhoff plate in bending only is based on the following displacement field
ow ow
MI(X,)’,ZJ)Z—Z_, MZ(X,Y»ZJ)Z_Z_, u3(-xayszvt)=w (121)
dax ay

where w(x, y, t) is the transverse displacement parameter. No axial displacement is
considered due to uncoupling phenomena between bending and axial behaviors for
orthotropic plates. Strain-displacement relations are

€1 3)&2

&=z —§7 w = zDpw (12.2)
32

€6 —Zm

and g3 = &4 = &5 = 0 due to Kirchhoff assumptions. Note that Voigt-Kelvin notation
is used for strain definitions (e.g. 11 — 1,22 — 2,33 — 3,23 - 4,13 - 5,12 —
6). Constitutive law is indicated as

o1 O Qi O &1
o|=|0n On O & (12.3)
06 0 0 Oss | |26
where
E, viEs E;
Oii=———, Op="——"—, On=——"—, Os=Gp (12.4)
1 —vipvy 1 — vy 1 — vy

The orthotropic properties of the lamina should be given E|, E», vi2, G and vy =
vi2E> /E applies. In case of isotropic materials two material properties are needed as
E and v, moreover, Q1 = O, Q12 = vQi; and Qg = G apply with2G = E/(1 +
v). It is convenient to write constitutive equations in matrix form by including the
strain-displacement relations (12.2) as

o = Qe = zQD,w (12.5)

Equilibrium equations are carried out using the Hamilton’s Principle. The strain
energy for the plate is

1 1
U=—/0181+0282+0686dV=—/aTedV
2)y 2)y

_! / €' Qe dV = 1 / Dyw) 2QDyw) dV = 1 / Dyw) DD, w)d 2
2 Jy 2 Jy 2 Jq
(12.6)

12.2 Mathematical Background 209

where D is the bending stiffness matrix

Dy D O
D=|D, Dy O (12.7)
0 0 Dge

and Dy = Qijh3/12, fori,j=1,2,6.
Potential work done by transverse loads is

V= /p(x, yV)w dxdy (12.8)
A

For the static analysis Hamilton’s Principle becomes the Principle of minimum total
potential energy (or principle of virtual displacements), thus

U446V =0 (12.9)

which means the equilibrium. At this stage the finite element approximation should
be introduced in order to get the solution in weak form.

12.3 Finite Element Approximation

The finite element approximation for the Kirchhoff plate theory using Hermite shape
functions starts with the classical polynomial approximation

wix,y, 1) = Y Ni(x, y)df (1) = Nd° (12.10)
j=1

where dje(t) are the parameters related to w and its derivatives at the nodes and
N;(x, y) the interpolation functions. Subscript ¢ identifies that quantities are defined
within a generic finite element and # is a function of kinematic parameters chosen for
each element node. Vectors N and d° collect element shape functions and generalized
displacement parameters, respectively.

Definitions of interpolation functions and their derivations according to nodal
parameters are given below

12.3.1 Interpolation Functions

Approximation polynomials for the present finite elements should be taken consid-
ering the following polynomial expansion scheme

210 12 Kirchhoff Plates

1 x x i

2y 43
é;&;é;} (12.11)
V3 ay? a2y a3
by considering all these aforementioned terms the polynomial is complete up to the
third order and it is valid when 4 generalized displacements per node are considered as
suchw, dw/dx, dw/dy and 3>w/dxdy (note that dw/dx, dw/dy represent rotation of
the fiber at the point). In this case the Hermite approximation is called conforming. A
not conforming approximation with w, dw/dx, dw/dy can be obtained by removing
the terms x%y?, x*y?, x?y3, x*y3 given in Eq. (12.11). Thus, the generation of the
shape functions for the not conforming element starts from the approximation

w=a +a2x+a3y+a4xy+a5x2 +a6y2 +a7x2y (12.12)
+ asxy® + aox’ + ajoy’ + anx’y + apxy’ '

Since the shape functions will represent both w and its derivatives. First order deriva-
tives should be carried out as

a_W — 2 2 2 3

il + agy + 2asx + 2a7xy + agy” + 3agx” + 3a11x7y + azy

. (12.13)
8_y = az + asx + 2a6y + a7x2 + 2agxy + 3a10y2 + a]1x3 + 3a12xy2

All these three approximations are valid in the 4 nodal corners of the finite element
defined by the coordinates (x;, y;) for i = 1, 2, 3, 4. However, since finite element
mapping has to be considered for transforming each element of general shape into the
one in a parent space (&, n) the approximation should be written in such space which
nodal corner values are (&1, ny) = (—1,—1), (&, n) = (1, —1), (&3, n3) = (1, 1)
and (&4, n4) = (—1, 1). By defining the vector ordering as

T
e
d° = [w1 wa w3 Wa Wi Waa Wz W Wyt W2 W3 W) (12.14)

where, x and, y represent partial derivatives with respect tox and y. Equations (12.12)—
(12.13) have to written for each corner and collected in matrix form as

d° = Aa (12.15)
where A is a known matrix of coefficients which are function of the node coordinates
(i, m;) for i = 1,2, 3, 4. Thus, the vector a is the one including coefficients a; for

j=1,..., 12 coefficients can be carried out by matrix inversion as

a=A"d° (12.16)

12.3 Finite Element Approximation 211

The solution obtained is substituted into the initial approximation function (12.12)
and each term which multiplies df represents the shape function associated with that
degree of freedom. In compact form they can be written as

Ni=gn (=1,2,3,4),
N; =82 025767 7,8), (12.17)
legj3 (1297 10711712)

where

g1 = 0.125 (1 + &) (1 +no) (2 + & + no — £* — %) ,
g = 0.125& (5o — 1) (1 + 1) (1 + £0)?, (12.18)
g3 = 0.125n; (o — 1) (1 + &) (1 + no)*

and & = &&;, no = nn,; fori = 1, 2, 3, 4. The master element is considered in (&, 1)
coordinates of side length 2 as most standard finite element procedures.
The conforming element is based on the approximation as

W = dj + axx + azy + asxy + a5x2 + a6y2 + a7x2y + agxy2 + a9x3

(12.19)
+ aipy® + anx’y + apxy’ + ainx’y? + aux’y® + aisx’y’ + ajex’y’

with derivatives

w _ > > 2
o ap + agy + 2asx + 2a7xy + agy” + 3agx” + 3a; x7y

+ ay?® + 2a13xy* + 3a1ax?y* + 2aisxy” + 3aiex’y’
— = a3 + asx + 2a6y + arx* + 2agxy + 3aioy* + anx’
dy (12.20)
+ 3anxy® + 2a3x%y + 2a1ax’y + 3aisx*y* + 3aiex’y?
9w
axady
+ 3a12y2 + dapzxy + 6a14x2y + 6al5xy2 + 9a16x2y2

= a4 + 2a7x + 2agy + 3ap;x*

The same aforementioned procedure can be followed letting to the following shape
functions associated with the displacement parameter vector

e
d° = [w1 Wo W3 W Wi Wao W3 W Wyt W2 W3 Wys
. (12.21)
W,xyl W,xyZ W,xy3 W,xy4]

Shape functions result to be

212 12 Kirchhoff Plates

Ni:gjl 021729374)7 Ni:gj2 025761798)1

. , (12.22)
N;=gj (G=9,10,11,12), N;= 8i4 (G =13,14,15,16)
where
gj1 = 0.0625(¢ + &)*(& — 2)(n + 1:)*(no — 2),
» = 0.0625¢; D21 — D20 — 2),
g EE+E) A —=8&)n+n) (no—2) (12.23)

g3 = 0.0625n;(§ + &)*(E0 — 2)(n + n)*(1 — no),
gja = 0.0625&m;(§ + £)*(1 — &) (n + n)*(1 — 1o)

and & = &§;, no = nn; for i = 1,2, 3,4. The master element is considered in
(&, n) coordinates of side length 2 as most standard finite element procedures.

12.3.2 Stiffness Matrix

Once the interpolation functions are defined according to the chosen selected degrees
of freedom per node, stiffness matrix creation should be performed.

The terms that have to be integrated are given by the strain energy Eq. (12.6) once
the approximation (12.10) is introduced in it. However, strain energy is written in
Cartesian coordinates (x, y) and it has to be mapped into reference ones (&,). This
procedure involves derivatives up to, at least, second order, thus, Jacobian matrix
transformation is required.

The first order derivatives of an arbitrary function defined in the Cartesian x — y
plane with respect to x and y, are given by the Jacobian matrix definition as (from
Eq. (11.33))

a

a a
AREAIE ki (122
dy on an
The above 2 x 2 matrix denoted by J~! is the inverse of Jacobian matrix of the
transformation J. Note that the first order derivatives of & and n with respect to x
and y are indicated as &, 1., &, n,, respectively. It is possible to obtain the inverse
matrix of Jacobian as

J ' =detJ! |:_y; _xzéi| ., detJ = xey, — x,ye (12.25)
n

where det J is the determinant of the Jacobian and comparing the inverse matrix of
Jacobian in (12.25) with that in (12.24), the following relationships are obtained

Yn

_ Ve X
det]J’

&x & = =007 P deg (12.26)

_ M
det]J’

12.3 Finite Element Approximation 213

The substitution of (12.26) into (12.24) yields

d d 0
— =detJ! — Ve —
0x 8};? on

(12.27)
— =detJ ' —x 0 +x 0
oy (PR
The second order derivatives of a function can be derived from (12.24) as
02 , 92 , 97 a2 a]
~ o, = Y Ty 2 xTx XX xx
ox? = Siggr T Mg TR S T e
92 , 92 , 0° 92 0 d
P _ 2% — 12.28
ayz Ey g2 +77ya Evr/y 9Eon +§V\ oE + Ny an ()
a2 02 92 a2 a ad

= gxéya_gz + NxMy + (any + ‘i:ynx) + Sxy 3§ + nxv 77

3xdy an? dEdN

Then, the second order derivatives of & with respect to x and y can be expressed as

=detJ 7 (yyyey — vy det ™" det Js — yeyyy + yey, det J~' det J,,)

(12.29)
£, = detJ 7 (xyxey — xi det J~'det J: — xex,, + xex, det J~! det Jy)

In a similar manner, the second order derivatives of n with respect to x and y can also
be obtained

Nee = det J72 (—y,,ygg + ynye detJ~! det J¢ + yeye,y — y§ det J~! det J,,)

_2 . 5 . (12.30)
Ny = det J7% (—x,xgz + x,xe detJ ' det Je + xexg,y — xz det J ™' det J,,)

where det J: and det J,, are the first order derivatives of the determinant of Jacobian

with respect to & and n, respectively. Differentiation of det J in (12.25) leads to

det Je = Xgyey — YeXen + YnXeg — XnVgs

(12.31)
detJy = —x,Yen + YnXey — YeXpy + XeVny

and finally the mixed derivatives of & and n with respect to x and y are given by

£y =det]? (—yyxey + ypx, det J ' detJ: + yex,; — yex, det J~' det 1)

Ny = det J? (—ygxa, — yyxe det J7' det Je + yyxer + vexe det J7! det Jﬂ)
(12.32)
The above general coordinate transformation formulation is valid for any transforma-
tion mapping. Herein, a 4 node linear element is considered for geometrical mapping,
thus, the finite element is not iso-parametric (but sub-parametric) because the num-
ber of parameters used for the geometry approximation are less then the ones used

214 12 Kirchhoff Plates

for interpolating the strain field within each element leading to a higher continuity
among the elements. This assumption is sufficient for the present scope.

The strain energy for Kirchhoff plate problem with the present finite element
approximation (12.10) takes the form

1 1

U= 5 / Dw) ' DDw) d2 = EdET / (D,N)"DD,N d 2 d°

| e 2 (12.33)

= -d”/ B'DB d$2 d°
2 7]

where B = D, N includes the derivatives of the shape functions with respect to the
Cartesian system as

B =[B B, B;] (12.34)
that have to be mapped according to the transformation of coordinates as

B, = SXZNES + n,%Nm] + nganEn + SxxNg + nxan
B = /Nee + 11Ny + 25,1, Ne, + §,Ne + 0, N, (12.35)
B3 =2 ($XS)YNEE + nxnerm + (Exny + gvnx)Nén + %-xyNg + nxyNn)

Derivatives of the shape functions are used and indicated as

9°N 3°N 9°N oN oN
= T nm = o 5> EN = T4 N§‘=_a an_a
02 an? 9gan 9§ an

(12.36)
The stiffness matrix of the generic finite element can be carried out from equation
(12.33) by rewriting the area integral in the parent domain using Jacobian matrix as

1 1
K¢ = / / B'DB det Jdédn (12.37)
—1J-1

Integration of (12.37) is carried out by Gauss integration. Summarizing, geometrical
element mapping is due to Q4 Lagrange shape functions, whereas finite element
approximation is carried out with Hermite interpolation functions.

The load vector is given by direct substitution of the finite element approximation
within the potential definition (12.8) as

1 1
fe = f / pNT det Jdedn (12.38)
—1J-1

After assembly of the stiffness matrix and load vector of the generic element, the
static problem can be solved using classical Gauss elimination method.

12.4 Isotropic Square Plate in Bending 215

12.4 Isotropic Square Plate in Bending

We consider a simply-supported (SSSS) and clamped (CCCC) square plate (side
a = b = 1) under uniform transverse pressure (p = 1), and thickness /. The modulus
of elasticity is taken E = 10920' and the Poisson’s ratio is taken as v = 0.3. The
non-dimensional transverse displacement is set as

_ D
w=w— (12.39)
pa
where the bending stiffness D is taken as
D= En (12.40)
S 12(1—-12) '

The code for solving the present problem is listed in problemK.m and given
below.

% MATLAB codes for Finite Element Analysis
% problemK.m

% Kirchhoff plate in bending

% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear; close all

% isotropic material

E = 10920; poisson = 0.30; thickness = 0.01; I = thickness"3/12;
D11 = E*thickness”3/12/(l-poisson”2) ;

D22 = D11; D12 = poisson*Dl1l; D66 = (l-poisson)*D11/2;

orthotropic material

El = 31.8e6; E2 = 1.02e6;

poissonl2 = 0.31; G12 = 0.96e6;
poisson2l = poissonl2*E2/E1;
thickness = 0.01; I = thickness®3/12;
D11 = E1*I/(l-poissonl2*poisson2l) ;
D22 = E2*I/(l-poissonl2*poisson2l) ;
D12 = poissonl2*D22; D66 = Gl2*I;

o0 0P o o o° o° d° o

o°

matrix C
bending part
C_bending = [D11 D12 0; D12 D22 0; 0 0 D66];

o

I'The reader may be curious about the reason for this particular value of E. With a = 1, thickness
h = 0.1 and the mentioned values for E and v we obtain a flexural stiffness of 1. This is only a
practical convenience for non-dimensional results, not really a meaningful value.

12 Kirchhoff Plates

12.4 Isotropic Square Plate in Bending 217

nodeCoordinates (elementNodes (k,1:4),2), ...
displacements (elementNodes (k,1:4)), ...
displacements (elementNodes (k,1:4)))

end
set (gca, 'fontsize’,18)
view (45,45)

The mesh is generated automatically using rectangularMesh.m code. The
boundary conditions for the plate are assigned using EssentialBC.m function. Some
predefined boundary condition configurations are given such as clamped (CCCC) and
simply-supported (SSSS) others can be easily implemented. The aforementioned
code is listed below

function [prescribedDof,activeDof] = .
EssentialBC (typeBC, GDof, xx,yy,nodeCoordinates, numberNodes)
% essential boundary conditions for rectangular plates
% W: transverse displamcent
% TX: rotation about y axis
% TY: rotation about x axis

switch typeBC
case ’‘ssss’ % simply supported plate
fixedNodeW =find (xx==max(nodeCoordinates(:,1))|...
xx::min(nodeCoordinates(:,l))|...
nodeCoordinates (:,2)) ...
nodeCoordinates(:,2)));

yy==min (

yy==max (

fixedNodeTX =find (yy==max (nodeCoordinates(:,2))|...
yy==min (nodeCoordinates(:,2)));

fixedNodeTY :find(xx::max(nodeCoordinates(:,1))\.4.
xx==min (nodeCoordinates(:,1)));

case ’‘cccc’ % clamped plate
fixedNodeW =find (xx==max(nodeCoordinates(:,1))|...
xx::min(nodeCoordinates(:,l))|...
yy==min(nodeCoordinates(:,2))|...
yy==max (nodeCoordinates(:,2)));
fixedNodeTX =fixedNodeW;
fixedNodeTY =fixedNodeTX;

case ’‘scsc’
fixedNodeW =find (xx==max(nodeCoordinates(:,1))|...
xx==min (nodeCoordinates (:,1))|...
nodeCoordinates (:,2))|...
nodeCoordinates (:,2)));

yy==min (

yy==max (

fixedNodeTX =find(xx==max(nodeCoordinates(:,2))\...
xx==min (nodeCoordinates(:,2)));

fixedNodeTY=[];

case ‘cccf’
fixedNodeW :find(xx::min(nodeCoordinates(:,l))|..4
yy==min (nodeCoordinates (:,2))|...
yy==max (nodeCoordinates(:,2)));

12 Kirchhoff Plates

This script has several supporting functions for stiffness matrix formStiffness-
MatrixK.m and force vector formForceVectorK.m generation.

12.4 TIsotropic Square Plate in Bending

12 Kirchhoff Plates

12.4 TIsotropic Square Plate in Bending

For the generation of stiffness matrix and force vector shape functions and
their derivatives are needed. Thus, specific functions are given for not conform-
ing (shapeFunctionK12.m) and conforming (shapeFunctionK16.m) elements as
well as Jacobian matrix calculation JacobianK.m. All these functions are listed
below

12 Kirchhoff Plates

12.4 TIsotropic Square Plate in Bending

12 Kirchhoff Plates

12.4 Isotropic Square Plate in Bending 225

function [JacobianMatrix, invJacobian,XYDerivatives] =
JacobianK (nodeCoordinates,naturalDerivatives)

JacobianMatrix: Jacobian matrix

invJacobian: inverse of Jacobian Matrix
XYDerivatives: derivatives w.r.t. x and y
naturalDerivatives: derivatives w.r.t. xi and eta
nodeCoordinates: nodal coordinates at element level

o0 o° o° of of

JacobianMatrix = nodeCoordinates’*naturalDerivatives(:,1:2);
invJacobian = inv (JacobianMatrix) ;

XYDerivatives = nodeCoordinates’*naturalDerivatives;

end % end function Jacobian

Moreover for geometric approximation the code shapeFunctionKQ4.m has been
considered . This code is different from the one used in the previous chapter because
higher order derivatives of the shape functions are needed in the present problem.
shapeFunctionKQ4.m is listed below

function [shape,naturalDerivatives] = shapeFunctionKQ4 (xi,eta)
% shape function and derivatives for Q4 elements

% shape : Shape functions

% naturalDerivatives: derivatives w.r.t. xi and eta

% xi, eta: natural coordinates (-1 ... +1)

shape=1/4*[(1-xi)*(l-eta); (1+xi)*(l-eta);
(1l+xi) * (1+eta); (1-x1) * (1+eta)];

% natural derivatives order:
$ [d/dx, d/dy, d°2/dx"2, d°2/dy"2, d"2/dxdy]
naturalDerivatives=...

1/4*[-(l-eta), -(1-xi);1l-eta, - (1+x1);
l+eta, 1+xi; - (l+eta), 1-xi1;
naturalDerivatives(:,5)=[1/4; -1/4; 1/4; -1/4]1;

end

Note that different shape functions are considered for the geometric approximation
and the displacement field approximation.
In Table 12.1 we present non-dimensional transverse displacement results obtained
by the code problemK.m for various boundary conditions. Conforming elements
have a faster convergence than not conforming ones, however, this results is not valid
in general for any Kirchhoff plate problem. Therefore, more degrees of freedom does
not mean in this case that fast convergence is observed.

In Fig.12.1 we show the deformed shape of a clamped and simply-supported
plate, using a 20 x 20 Q4 mesh.

226 12 Kirchhoff Plates
Table 12.1 Dimensionless deflection #w - 102 for square isotropic plate
Ccccc SSSS
NC C NC C
5x5 0.1180 0.1115 0.3976 0.3821
10 x 10 0.1290 0.1268 0.4136 0.4093
20 x 20 0.1272 0.1266 0.4081 0.4070
30 x 30 0.1268 0.1266 0.4071 0.4066
Exact [1] 0.126 0.4062

05 05 05 05
10 10

Fig. 12.1 Deformed shape of a clamped and simply-supported square plate meshed by 20 x 20
Q4 elements

12.5 Orthotropic Square Plate in Bending

An orthotropic square plate under uniform load is considered in the present section
with simply-supported boundary conditions. The problem has been taken from the
book [2] where the following material properties are selected: E; = 31.8 Mpsi,
E; = 1.02 Mpsi, vip = 0.31, G, = 0.96 Mpsi. Dimensionless central deflections

are considered as
D12 4+ 2Dgs
W—

o (12.41)

w=

The same code shown above can be used to carried out the following calculations.

The reader needs to comment and uncomment lines relative to material properties

and dimensionless formula for the transverse displacement. Results using conforming

and not conforming elements are listed in Table 12.2. Note that for the present case

the not conforming element has a faster convergence with respect to the conforming
one.

References 227

Table 12.2 Dimensionless SSSS
deflection w - 103 for square NC c
orthotropic plate
0.9014 0.8541
5x5
0.9317 0.9200
10 x 10
0.9229 0.9200
20 x 20
0.9213 0.9200
30 x 30
Exact [2] 0.9225

References

1. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edn. (McGraw-Hill
International Student Edition, Tokyo, 1959)

2. J.N.Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill International
Editions, New York, 2005)

Chapter 13 ®)
Mindlin Plates i

Abstract This chapter considers the static, free vibration and buckling problem of
Mindlin plates in bending. Many implementation codes will be taken from the previ-
ous chapters such as mesh generation, Gauss integration and field representation. The
theory of Mindlin plates is firstly presented and several applications are described.

13.1 Introduction

This chapter considers the static, free vibration and buckling problem of Mindlin
plates in bending. Many implementation codes will be taken from the previous chap-
ters such as mesh generation, Gauss integration and field representation. The theory
of Mindlin plates is firstly presented.

13.2 The Mindlin Plate Theory

The Mindlin plate theory or first-order shear deformation theory for plates includes
the effect of transverse shear deformations [1]. It may be considered an extension
of the Timoshenko theory for beams in bending. The main difference from the thin
Kirchhoff-type theory is that in the Mindlin theory the normals to the undeformed
middle plane of the plate remain straight, but not normal to the deformed middle
surface.

13.2.1 Displacement Field

If only transverse loads are applied, Mindlin plate is subjected to bending and shear
deformations only, no axial deformation occurs. Thus, the assumed displacement

© The Editor(s) (if applicable) and The Author(s), under exclusive 229
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_13

230 13 Mindlin Plates

Fig. 13.1 Mindlin plate: illustration of geometry and rotational degrees of freedom

field for a thick plate (of thickness /) can be defined without axial displacements as

ui(x,y,z,t) =z0:(x, y, 1),
ur(x,y,z,t) =z20,(x, y,1), (13.1)
M3(X, Y, 2, t) = U)(X, Y, t)

where 0., 6, are the rotations of the normal to the middle plane with respect to axes

y and x, respectively, and w is the uniform transverse displacement of the plate.
Physical meaning of the kinematic parameters is shown in Fig. 13.1.

13.2.2 Strains

Strain-displacement relations are carried out which give the relations between strains
and degrees of freedom w, ¢, and 6,. Bending (flexural) strains are obtained as

. Ouy _ 00,
“ T ox T “ox
8142 89)
6= G2 =15t (132)
Ou; Ouy a0, 00,
'ny=$+§=z(a+ ay>

13.2 The Mindlin Plate Theory 231

while the transverse shear deformations are obtained as

8u3 81/!1 ow
=224 =22 40,
Ox 0z Ox (13.3)
_8u3+8u2_6w+9 ’
Tz = oy dz Oy 4
that in matrix form become
€, = zeD, € = '7(0) (13.4)
where
€, = [& €y ﬂ}/xy]T’ € = [’)/xz "sz]T (13.5)

Note that in-plane strains are linear through the thickness and they will be involved
inbending, whereas transverse shear deformations are constant through the thickness.
The latter needs a shear correction factor for the transverse stress quantities.

13.2.3 Stresses

The linear elastic stress-strain relations in bending are defined for a homogeneous,
isotropic material as

o, =Qe (13.6)

where
oy = [0y oy Tiy]" (13.7)

are the bending stresses and strains, and Qy, is defined as

1v 0
E
Q=1 Vllgy (13.8)
00—

whereas the linear elastic stress-strain relations in transverse shear are defined as
O = Qses (13.9)

where
o5 =1 7] (13.10)

are the transverse shear stresses and strains and Q; is defined as

232 13 Mindlin Plates
10
QX:G[O]] (13.11)

where G is the shear modulus.

13.2.4 Hamilton’s Principle

The strain energy of the Mindlin plate is given as [1, 2]

1 T k T
U=~-| o,,dV+= | o,€6dV (13.12)
2 Jy 2)y

The k parameter, also known as the shear correction factor can be taken as 5/6 [3]
as also introduced for Timoshenko beams in Chap. 10.
Introducing the stresses (13.6) and (13.9) into the strain energy (13.12), we obtain

1 k
U:—/ eZQbeb dV—i——/ eSTQSeS av
2)y 2)y

1 k
= _/ eDT22Qpe" dV—i——/ ~OTQx av (13.13)
2 Jy 2 Jy

= l/ eVTDeV d2 + l/ ~OTA A~ a0
2 Jo 2 Jo

where D and A; are the bending and shear stiffness matrices in the form

X lv 0
Eh-
D= vl 0 | A —ggn|lO (13.14)
12(1 — v?) I—v 01
00
The potential can be defined as
VE=—WE=—/ pwds2 (13.15)
Q2

where p is the transverse pressure applied on the plate, which works for the transverse
displacement only. Other types of load are neglected in the present investigation.
The kinetic energy of the plate is defined by

K= _/ p <u')2 +2%60,° + zzé)'yz) dv
\4

) (13.16)
= — / (mowz + 1’1129)(2 + mzé?yz) as2
2

13.2 The Mindlin Plate Theory 233

where m(and m, are termed main and rotary inertias respectively.

h/2 h/2 ph3
my = f pdz = ph, m, = / pztdz = — (13.17)
—h/2 —

13.3 Finite Element Discretization

The generalized displacements are independently interpolated using the same shape
functions

w=Y Ni&nwi, b= N&mba, 0= Ni(&mby (13.18)

i=1 i=1 i=1

where n = 4 for Q4,n = 8 for Q8 and n = 9 for Q9. N; (¢, n) identify the Lagrangian
shape functions according to element choice.

The finite element approximation (13.18) can be conveniently written in matrix
form as

A

w NOO|[W
u=|6,|=|0NO]| |6 | =Nd° (13.19)
Oy 00N] L6,

where w = [w1 . wn]T, éx = [9“ .. Gxn], éy = [Hyl .. Hyn], de collects all the
degrees of freedom of the generic element in vector form and N is the matrix of the
shape functions. Strains are defined as

€, = 7B,d°; €, = B,d* (13.20)

The strain-displacement matrices for bending and shear contributions are obtained
by derivation of the shape functions by

0.0 N
ox ox
B 0...0 0 o N N, 13.21
b=10... 5 " oy (13.21)

0 0% 8N,,% ON,
0y ey o o

ON, ON,
—_— ... Ni...N, 0...0
Ox ox !

B, = (13.22)
ON, 0N,
! 0...0N,...N,

a_y... ay

We then obtain the plate strain energy (13.13) as

234 13 Mindlin Plates
e 1 eT 2npT e ge
U = §d "B, QB dzd2° d
¢Jz
1
+ Ed”k / / B/ Q,B, dzd°d® (13.23)
¢ Jz
The stiffness matrix of the Mindlin plate is then obtained as
K¢ :/ B/ DB, d2¢ +/ BT A,B, d2¢ (13.24)

The external work (potential) (13.15) with the finite element approximation becomes

VE= W = _d”/ N’ pdg° (13.25)

e

where p = [pO O]T (only transverse loads are considered), thus, the force vector
for the Mindlin plate is given by

fe = / NT p dQ¢ (13.26)
Finally the kinetic energy (13.16) takes the form
1. .
K¢ = Ed” / NTIN d2¢d¢ (13.27)

where I is the inertia matrix given by

my 0 0
I=|0m O (13.28)
0 0 niy

where m, represents the rotary inertia that for thin plates is generally negligible.
Mass matrix is given by

M6=f NTIN d$2°¢ (13.29)

Geometric mapping is applied in order to get integrals in natural coordinates. Such
transformation is achieved with the determinant of the Jacobian matrix det J as done
for the plane stress case.

The element stiffness matrix is

1 1 1 1
K¢ = / / B} DB, det J dédn + f / BT A,B, detJ d¢dn (13.30)
—1J-1 —1J-1

13.3 Finite Element Discretization 235

The vector of nodal forces is

1 1
fe :/ [NTpdetJ dédn (13.31)
-1J-1

and the mass matrix in natural coordinates is
1 pl
M¢ =/ / NTIN detJ dédn (13.32)
—1J-1

All element matrices are computed by Gauss integration. Mindlin theory (as Timo-
shenko one) has demonstrated to suffer from shear locking. It has been demonstrated
that the simplest remedy to this numerical behavior is to perform reduced integra-
tion of the shear component. For instance, the stiffness integral for Q4 element is
solved by considering 2 x 2 Gauss integration (exact) for the bending contribution
and single point quadrature (reduced) for the shear contribution [4, 5].

13.4 Stress Recovery

Once the nodal solution is carried out d° stresses can be recovered from constitutive
equations as
op = Quer = Qpze” = QzByd’ (13.33)
o5 = Qses = QsBsde
It is noted that o, and o are evaluated at the integration points (Gauss-Legendre
points). Since the bending stresses are linear through the plate thickness in the fol-
lowing they will be computed at the top layer of the plate z = & /2. On the contrary,
shear stresses are constant through the thickness, thus they are independent on z.
Values for the element corner points can be obtained by extrapolation as illustrated
in the Sect. 11.8.1. Accurate values of the transverse shear stresses can be carried out
by solving the 3D equilibrium equations with o, as known functions.

13.5 Square Mindlin Plate in Bending

We consider a simply-supported and clamped square plate (side a = b = 1) under
uniform transverse pressure (p = 1), and thickness #. The modulus of elasticity is
taken E = 10920" and the Poisson’s ratio is taken as v = 0.3. The non-dimensional
transverse displacement is set as

I'The reader may be curious about the reason for this particular value of E. With a = 1, thickness
h = 0.1 and the mentioned values for E and v we obtain a flexural stiffness of 1. This is only a
practical convenience for non-dimensional results, not really a meaningful value.

236 13 Mindlin Plates

Table 13.1 Non-dimensional transverse displacement of a square plate, under uniform pressure
simply-supported (SSSS) boundary conditions

a/h Mesh Q4 Q8 Q9 Exact
10 2x2 0.003545 0.004039 0.004408
6x6 0.004245 0.004272 0.004274
10 x 10 0.004263 0.004273 0.004273
20 x 20 0.004270 0.004273 0.004273
30 x 30 0.004271 0.004273 0.004273 0.004270
10,000 2x2 0.003188 0.001541 0.004194
6x6 0.004024 0.000801 0.004064
10 x 10 0.004049 0.003797 0.004063
20 x 20 0.004059 0.004061 0.004062
30 x 30 0.004060 0.004062 0.004062 0.004060
_ D
w=w—p (13.34)
pa
where the bending stiffness D is taken as
D —Eh3 13.35
T12(1 =12 (13.35)

In Tables 13.1 and 13.2 we present non-dimensional transverse displacement results
obtained by the code problem19.m for various thickness values and boundary con-
ditions. In Fig. 13.2 we show the deformed shape of a simply-supported plate, using
a 20 x 20 Q4 mesh.

% MATLAB codes for Finite Element Analysis
% probleml9.m

% Mindlin plate in bending Q4 elements

$ A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear; close all

materials
10920; poisson = 0.30; kapa = 5/6; thickness = 0.1;

%
E
I thickness”3/12;

% constitutive matrix
% bending part
C_bending = I*E/(l-poisson”2)* ...
[1 poisson O;poisson 1 0;0 0 (l-poisson)/2];
% shear part

13.5 Square Mindlin Plate in Bending

238 13 Mindlin Plates

displacements (elementNodes (k,1:4)))

end
set (gca, 'fontsize’,18)
view(45,45)

% post-computation

[stress,shear] = MindlinStress (GDof,numberElements, ...
elementNodes, numberNodes, nodeCoordinates, displacements, . ..
C_shear,C_bending, thickness, 'Q4’, 'complete’, 'reduced’) ;

This MATLAB code calls functions formStiffnessMatrixMindlin.m for computa-
tion of stiffness matrix and formForceVectorMindlin.m for computation of the force

Fig. 13.2 Mesh of 20 x 20 Q4 elements and deformed shape

13.5 Square Mindlin Plate in Bending 239

Table 13.2 Non-dimensional transverse displacement of a square plate, under uniform pressure
clamped (CCCC) boundary conditions

a/h Mesh Q4 Q8 Q9 Exact
10 2x2 0.000357 0.001730 0.001757

6x6 0.001486 0.001505 0.001507

10 x 10 0.001498 0.001505 0.001505

20 x 20 0.001503 0.001505 0.001505

30 x 30 0.001503 0.001505 0.001505
10,000 2x2 3.5.10~10 0.001541 0.001541

6 x6 0.001239 0.000173 0.001267

10 x 10 0.001255 0.000199 0.001266

20 x 20 0.001262 0.001142 0.001265

30 x 30 0.001264 0.001254 0.001265 0.001260

vector. Such functions can be used also for the finite element computation with Q8
and Q9 elements.

function [K] = ...
formstiffnessMatrixMindlin (GDof, numberElements,
elementNodes, numberNodes, nodeCoordinates, C_shear,
C_bending, elemType, quadTypeB, quadTypeS)

% elemType: type of element Q4, 08, Q9

quadTypeB: type of quadrature for bending

$ quadTypeS: type of quadrature for shear

o°

% computation of stiffness matrix for Mindlin plate element

% K : stiffness matrix
K = zeros (GDof) ;

% Gauss quadrature for bending part
[gaussWeights, gaussLocations] = gaussQuadrature (quadTypeB) ;

% cycle for element
for e = l:numberElements
% indice : nodal connectivities for each element
% elementDof: element degrees of freedom
indice = elementNodes (e, :);
elementDof = [indice indice+numberNodes indice+2*numberNodes] ;
ndof = length (indice) ;

% cycle for Gauss point

for g = 1l:size(gaussWeights, 1)
GaussPoint = gaussLocations(q, :);
xi = GaussPoint (1) ;
eta = GaussPoint (2);

% shape functions and derivatives
[shapeFunction,naturalDerivatives] = ...

13 Mindlin Plates

13.5 Square Mindlin Plate in Bending

13 Mindlin Plates

The imposition of the essential boundary conditions is made in function Essen-
tialBC.m, which has been introduced in the previous chapter for the study of Kirch-
hoff plates.

In the last part of the main code the post-computation of the stresses is given
in MindlinStress.m. Post-computation implementation is given in the code
below

13.5 Square Mindlin Plate in Bending

244 13 Mindlin Plates

end % end gauss point loop
end % end element loop

end

MATLAB codes for solving the static problem for Mindlin plates with Q8 and
Q9 elements are not reported for the sake of conciseness but given in codes prob-
lem19a.m and problem19b.m.

13.6 Free Vibrations of Mindlin Plates

By using the Hamilton Principle [2], we may express the equations of motion of
Mindlin plates as

Mii + Ku =f (13.36)

where M, K, f are the system mass and stiffness matrices, and the force vector,
respectively, and ii, u are the accelerations and displacements. Assuming a harmonic
motion we obtain the natural frequencies and the modes of vibration by solving the
generalized eigenproblem [6]

(K—-w™M)X=0 (13.37)

where w is the natural frequency and X the mode of vibration.
By using the mass (13.29) and stiffness (13.24) matrices defined before, the free
vibration problem can be solved after assembly.

We consider a square plate (side a), with thickness-to-side ratio #/a = 0.01 and
h/a = 0.1. The non-dimensional natural frequency is given by

- P
W= Wmnd,| =,
G
where p is the material density, G the shear modulus (G = E/(2(1 + v))), E the
modulus of elasticity and v the Poisson’s ratio. Indices m and n are the vibration
half-waves along x and y axes. In this problem we consider simply-supported (SSSS)
and clamped (CCCC) plates, as well as SCSC and CCCF plates where F means free
side.

For CCCC and CCCF we use a shear correction factor k = 0.8601, while for
SCSC plates we use k = 0.822. For SSSS plates we consider k = 5/6.

13.6 Free Vibrations of Mindlin Plates

245

Table 13.3 Convergence of natural frequency w for CCCC plate with k£ = 0.8601, v = 0.3

hja = 0.01

Mesh Q4 Q8 Q9 Ref [7]
10 x 10 0.1800 0.1756 0.1754

15 x 15 0.1774 0.1754 0.1754

20 x 20 0.1765 0.1754 0.1754

25 % 25 0.1761 0.1754 0.1754 0.1754
hja =0.1

Mesh Q4 Q8 Q9 Ref [7]
10 x 10 1.6259 1.5911 1.5911

15% 15 1.6063 1.5911 1.5911

20 x 20 1.5996 1.5910 1.5910

25 % 25 1.5965 1.5910 1.5910 1.5940

Table 13.4 Convergence of natural frequency w for SSSS plate with k = 0.8333, v = 0.3

hja = 0.01

Mesh Q4 Q8 Q9 Ref [7]
10 x 10 0.0973 0.0963 0.0963

15 x 15 0.0968 0.0963 0.0963

20 x 20 0.0965 0.0963 0.0963

25 % 25 0.0965 0.0963 0.0963 0.0963
h/a =0.01

Mesh Q4 Q8 Q9 Ref [7]
10 x 10 0.9399 0.9303 0.9303

15x 15 0.9346 0.9303 0.9303

20 x 20 0.9327 0.9303 0.9303

25 % 25 0.9318 0.9303 0.9303 0.930

In Table 13.3 we show the convergence of the fundamental frequency for CCCC
plate with £ = 0.8601, » = 0.3 and two thickness to width ratios 4/a = 0.01 and
h/a =0.1. Q4, Q8 and Q9 finite elements are employed. We obtain quite good
agreement with the analytical solution [7].

In Table 13.4 we show the convergence of the fundamental frequency for SSSS
plate with k = 0.8333, v = 0.3 for two thickness to width ratios #/a = 0.01 and
h/a = 0.1. Again, we obtain quite good agreement with a analytical solution [7].

Tables 13.5 and 13.6 list the natural frequencies of a SSSS plate with #/a = 0.1
and h/a = 0.1, being k = 0.833, v = 0.3. Our finite element solution agrees with
the tridimensional solution and analytical solution given by Mindlin [6].

Tables 13.7 and 13.8 compare natural frequencies with the Rayleigh-Ritz solution
[6] and a solution by Liew et al. [8].

246 13 Mindlin Plates

Table 13.5 Natural frequencies of a SSSS plate with 7/a = 0.1, k = 0.833, v = 0.3 using a mesh
15x 15

Mode m n Q4 Q8 Q9 3D* Mindlin*
1 1 1 09346 09303 09303 |0.932 0.930
2 2 1 22545 22194 22194 [2226 2219
3 1 2 22545 22194 22194 [2226 2219
4 2 2 34592 34058 |3.4058 |3.421 3.406
5 3 1 43031 |4.1504 |4.1504 |4.171 4.149
6 1 3 43031 |4.1504 |4.1504 | 4.171 4.149
7 3 2 53535 52065 52065 |5.239 5.206
8 2 3 53535 52065 52065 |5.239 5.206
9 4 1 6.9413 |6.5246 | 65246 |- 6.520
10 1 4 69413 65246 | 65246 |- 6.520
11 3 3 70318 |6.8354 68354 | 6.889 6.834
12 4 2 78261 |7.4506 |7.4506 |7.511 7.446
13 2 4 78261 74506 |7.4506 |7.511 7.446

*Analytical solution

Table 13.6 Natural frequencies of a SSSS plate with 2/a = 0.01, k = 0.833, v = 0.3 using amesh
20 x 20

Mode m n Q4 Q8 Q9 Mindlin*
1 1 1 0.0965 0.0963 0.0963 0.0963
2 2 1 0.2430 0.2406 0.2406 0.2406
3 1 2 0.2430 0.2406 0.2406 0.2406
4 2 2 0.3890 0.3847 0.3847 0.3847
5 3 1 0.4928 0.4808 0.4808 0.4807
6 1 3 0.4928 0.4808 0.4808 0.4807
7 3 2 0.6380 0.6246 0.6246 0.6246
8 2 3 0.6380 0.6246 0.6246 0.6246
9 4 1 0.8550 0.8164 0.8164 0.8156
10 1 4 0.8550 0.8164 0.8164 0.8156
11 3 3 0.8857 0.8641 0.8641 0.8640
12 4 2 0.9991 0.9599 0.9599 0.9592
13 2 4 0.9991 0.9599 0.9599 0.9592

*Analytical solution

13.6 Free Vibrations of Mindlin Plates 247

Table 13.7 Natural frequencies of a CCCC plate with #/a = 0.1, k = 0.8601, v = 0.3 using a
mesh 20 x 20

Mode m n Q4 Q8 Q9 Rayleigh- | Liew et al.

Ritz [8]

[7]
1 1 1 1.5955 1.5910 1.5910 1.5940 1.5582
2 2 1 3.0662 3.0390 3.0390 3.0390 3.0182
3 1 2 3.0662 3.0390 3.0390 3.0390 3.0182
4 2 2 4.2924 4.2626 4.2626 4.2650 4.1711
5 3 1 5.1232 5.0253 5.0253 5.0350 5.1218
6 1 3 5.1730 5.0729 5.0729 5.0780 5.1594
7 3 2 6.1587 6.0803 6.0803 6.0178
8 2 3 6.1587 6.0803 6.0803 6.0178
9 4 1 7.6554 7.4142 7.4142 7.5169
10 1 4 7.6554 7.4142 7.4142 7.5169
11 3 3 7.7703 7.6805 7.6805 7.7288
12 4 2 8.4555 8.2618 8.2617 8.3985
13 2 4 8.5378 8.3371 8.3370 8.3985

Table 13.8 Natural frequencies of a CCCC plate with #/a = 0.01, k = 0.8601, » = 0.3 using a
mesh 20 x 20

Mode m n Q4 Q8 Q9 Rayleigh- | Liew et al.

Ritz [8]

[7]
1 1 1 0.175 0.1754 0.1754 0.1754 0.1743
2 2 1 0.3635 0.3574 0.3574 0.3576 0.3576
3 1 2 0.3635 0.3574 0.3574 0.3576 0.3576
4 2 2 0.5358 0.5266 0.5266 0.5274 0.5240
5 3 1 0.6634 0.6400 0.6400 0.6402 0.6465
6 1 3 0.6665 0.6431 0.6431 0.6432 0.6505
7 3 2 0.8266 0.8020 0.8020 0.8015
8 2 3 0.8266 0.8020 0.8020 0.8015
9 4 1 1.0875 1.0227 1.0227 1.0426
10 1 4 1.0875 1.0227 1.0227 1.0426
11 3 3 1.1049 1.0683 1.0683 1.0628
12 4 2 1.2392 1.1754 1.1754 1.1823
13 2 4 1.2446 1.1804 1.1804 1.1823

248 13 Mindlin Plates

Table 13.9 Natural frequencies for SCSC plate with 2/a = 0.1, k = 0.822, v = 0.3 using a mesh
15 x 15

Mode m n Q4 Q8 Q9 Mindlin [6]
1 1 1 1.2940 1.2837 1.2837 1.302
2 2 1 2.3971 2.3641 2.3641 2.398
3 1 2 2.9290 2.8595 2.8595 2.888
4 2 2 3.8394 3.7735 3.7735 3.852
5 3 1 4.3475 4.2021 4.2021 4.237
6 1 3 5.1354 4.9095 4.9095 4.936
7 3 2 5.5094 5.3737 5.3736

8 2 3 5.8974 5.7075 5.7075

9 4 1 6.9384 6.5325 6.5324

10 1 4 7.2939 7.0968 7.0967

11 3 3 7.7968 7.2776 7.2776

12 4 2 7.8516 7.5033 7.5032

13 2 4 8.4308 7.9849 7.9847

Table 13.10 Natural frequencies for SCSC plate with #/a = 0.01, k = 0.822, » = 0.3 using a
mesh 15 x 15

Mode m n Q4 Q8 Q9 Mindlin [6]
1 1 1 0.1424 0.1410 0.1410 0.1411
2 2 1 0.2710 0.2664 0.2664 0.2668
3 1 2 0.3484 0.3374 0.3374 0.3377
4 2 2 0.4722 0.4597 0.4596 0.4608
5 3 1 0.5191 0.4975 0.4974 0.4979
6 1 3 0.6710 0.6279 0.6279 0.6279
7 3 2 0.7080 0.6811 0.6809

8 2 3 0.7944 0.7517 0.7516

9 4 1 0.8988 0.8289 0.8288

10 1 4 1.0228 0.9695 0.9690

11 3 3 1.0758 1.0040 1.0036

12 4 2 1.1339 1.0129 1.0129

13 2 4 1.2570 1.1387 1.1385

Tables 13.9 and 13.10 compare natural frequencies for SCSC plate with 2 /a = 0.1
andh/a = 0.1,being k = 0.822, v = 0.3, respectively. Sides located at x = 0; L are
simply-supported.

Tables 13.11 and 13.12 compare natural frequencies for CCCF plates with #/a =
0.1 and i /a = 0.01, respectively, being k = 0.822, v = 0.3. Side located at x = L
is free.

13.6 Free Vibrations of Mindlin Plates

249

Table 13.11 Natural frequencies for CCCF plate with 2/a = 0.1, k = 0.8601, v = 0.3 using a

mesh 15 x 15

Mode m n Q4 Q8 Q9 Mindlin [6]
1 1 1 1.0923 1.0803 1.0802 1.089
2 2 1 1.7566 1.7428 1.7428 1.758
3 1 2 2.7337 2.6557 2.6555 2.673
4 2 2 3.2591 3.1953 3.1953 3.216
5 3 1 3.3541 3.2882 3.2881 3.318
6 1 3 4.6395 4.5554 4.5553 4.615
7 3 2 4.9746 4.7287 4.7285

8 2 3 5.4620 5.2428 5.2427

9 4 1 5.5245 5.3091 5.3090

10 1 4 6.5865 6.3901 6.3899

11 3 3 6.6347 6.4428 6.4426

12 4 2 7.6904 7.1330 7.1328

13 2 4 8.1626 7.6590 7.6589

Table 13.12 Natural frequencies for CCCF plate with 4/a = 0.01, k = 0.8601, v = 0.3

Mode m n Q4 Q8 Q9 Mindlin [6]
1 1 1 0.1180 0.1166 0.1166 0.1171
2 2 1 0.1967 0.1947 0.1947 0.1951
3 1 2 0.3193 0.3079 0.3078 0.3093
4 2 2 0.3830 0.3733 0.3733 0.3740
5 3 1 0.4031 0.3921 0.3920 0.3931
6 1 3 0.5839 0.5671 0.5669 0.5695
7 3 2 0.6387 0.5948 0.5947

8 2 3 0.7243 0.6541 0.6539

9 4 1 0.8817 0.6820 0.6818

10 1 4 0.9046 0.8399 0.8393

11 3 3 1.0994 0.8590 0.8584

12 4 2 1.1407 0.9771 0.9769

13 2 4 1.1853 1.0338 1.0335

Figure 13.3 shows the modes of vibration for a CCCC plate with 4#/a = 0.1, using

20 x 20 Q4 elements.

250 13 Mindlin Plates

Figure 13.4 shows the modes of vibration for a SSSS plate with #/a = 0.1, using
20 x 20 Q4 elements.

Figure 13.5 shows the modes of vibration for a SCSC plate with #/a = 0.01,
using 20 x 20 Q4 elements.

Figure 13.6 shows the modes of vibration for a CCCF plate with #/a = 0.1, using
20 x 20 Q4 elements.

The MATLAB code (problem19Vibrations.m), solves the free vibration problem
of Mindlin plates. The user is requested to change input details according to the
problem.

13.6 Free Vibrations of Mindlin Plates 251

This code calls function formMassMatrixMindlin.m which computes the mass
matrices of the Mindlin Q4, Q8 and Q9 elements. The code for computing the stiff-
ness matrix has already been presented.

13 Mindlin Plates

Codes for solving the free vibration problem with Q8 and Q9 elements are not
shown for the sake of conciseness.

13.7 Stability of Mindlin Plates 253

; w(2) = 199.5017
0.8
0.6
0.4
0.2
0 2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
4 w(3) = 199.5017 4 w(4) = 279.51
N /
0.8 0.8
0.6 0.6
e
0.4 0.4
0.2 0.2
0 4 0 B /
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 13.3 Modes of vibration for a CCCC plate with 4 /a = 0.1, using 20 x 20 Q4 elements

13.7 Stability of Mindlin Plates

In this section we formulate and implement the buckling analysis of Mindlin plates.
After presenting the basic finite element formulation, we present a MATLAB code
for buckling analysis of a simply-supported isotropic square plate under uniaxial
initial stress.

In order to study the buckling problem of Mindlin plates the potential of initially
stresses plates has to be considered. Initial stress works for the nonlinear gradient of
displacements as [6]

v = / (0°) enp dV (13.38)
Vv

254

0 0.2 0.4 0.6 0.8 1
3 w(3) = 145.1034
L/
0.8
0.6
0.4
0.2
o™
0 0.2 0.4 0.6 0.8 1

13 Mindlin Plates

5 w(2) = 145.1034
0.8
0.6
5 /
0.2
0 0.2 0.4 0.6 0.8 1
i w(4) = 222.6577
/ o
0.8
0.6
o e
v X
0.4
0.2
0 N Z
0 0.2 0.4 0.6 0.8 1

Fig. 13.4 Modes of vibration for a SSSS plate with #/a = 0.1, using 20 x 20 Q4 elements

0 _ [0 ;00
where 0¥ = [0? 09 70,

Von Karman nonlinear strains) as

T . .
] and ey, represents the nonlinear strains (also known as

aul 2 8u2 2 au3 2
Ox , 0x , Ox ,
1 Ouy Ouy Ous
_1 Ouy Ou ous 13.39
M3 (3y)+<3y> +(3y) (1339
o (S dm OuzOuz Ous Ous
| \ Ox Oy ox 0dy ox 0y)|

13.7 Stability of Mindlin Plates

1 w(3) = 22.2583
Lt N
0.8
0.6
0.4
0.2
ol =

0 0.2 0.4 0.6 0.8 1

w(2) = 17.432

255

0.8

0.6

/ N
0.4
0.2
02 04 06 08

0 1
w(4) = 30.2419
1 7 <
0.8
0.6
y
v /
0.4
02
0 \ =
0 0.2 0.4 0.6 0.8 1

Fig. 13.5 Modes of vibration for a SCSC plate with #/a = 0.01, using 20 x 20 Q4 elements

by including the Mindlin displacement field (13.1) the nonlinear strains take the form

00, 00
2 2——
(Z Ox Oy

[, (00, 2+
¢ Ox

S 2<69" 2+
NL—2 Z 8)7

00,\> [ow\>
2 2y et
: (a> +(6x)
2 % 2+<6_w ’
‘ dy oy

Z@x dy

owou
ox 0y /|

the potential of second order displacements can be rewritten as

(13.40)

256 13 Mindlin Plates

w(2) = 113.4491

0.8
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1

0 02 04 06 08 1 0
3 w(3) = 174.9087] w(4) = 209.3844 .
0.8 0.8
0.6 0.6
L/
0.4 0.4
0.2 0.2
o™ 0
0 02 04 06 08 1 0 02 04 06 08 1

Fig. 13.6 Modes of vibration for a CCCF plate with 2/a = 0.1, using 20 x 20 Q4 elements

1 90, * 20,*> [ow\’
2 _ 0,2 2 (Y e
i ‘Z/V{“x(z (6x) i <8x) +(ax)>
90, * 20,* [ow\’
of.2(%x 2 (9% Jw (13.41)
+Uy(z (3y) e <8y) +<3y>>
90, 00 80, 00, Ow dw
20 2 X 7rx 277y 7Y hates dv
+ Txy<z Ox Oy +z Ox Oy +8x 8y>}

Rearranging the nonlinear terms we have

1
v = 5/ (VwT&OVw +22V0T6°vo, + ZZVGyT&OV9y>dV (13.42)
14

13.7 Stability of Mindlin Plates 257

where V = [0/0x 0/0x]" is the gradient operator and

0.0
N O'x Tx.
o = |:7_0 ‘7§1| (13.43)

xy
and finally

1 h? 3
v = 5/ <thT&°Vw + Evef&"vax + Eve{&ow)y)d:ze (13.44)

by collecting all the terms in matrix form as

Vw
1
v = E/ [Vw” VoI voT]s° | ve, |de° (13.45)
‘ Ve,
where S° is a banded 6 x 6 matrix as
W’ 0 0
h3 A0
= 0 —o 0 (13.46)
12
0 0 —6
127

where 0 is a 2 x 2 matrix of zeros. Since the scope is to introduce the finite element
approximation (13.18) it is convenient to convert the vector of gradients as

Vw Voo w
Vo, |=10V 0 0, | =Vu (13.47)
Vo, 00V]||6

where 0 is a2 x 1 matrix of zeros and V is a 6 x 3 operator including partial deriva-
tives with respect to x and y.

Finally the second order potential (13.45) can be rewritten in matrix form and the
finite element approximation (13.18) can be included as

1
v =— [(vu)’S'Vu de©

? 2 | (13.48)
=—d7 f (VNSO (VNY)d2¢d® = =d°T | GTS’Gdde
2 o 2 o
Thus, the geometric stiffness matrix K¢, is defined
K; = | G'S°Gdq¢ (13.49)

¢

258 13 Mindlin Plates

where G is a 6 x 3n matrix with the following structure

[Nix Nay...N,., 0 O 0 0 0 ..0
NiyNyy...Nyy O 0 ...0 0 O .. 0
G- 0O 0 0 NiyNay...NyxO O .. 0
—{0 o0 0 Niy Noy NyyO O .. 0
0 o0 0O 0 O 0 Ny Nyy...Nyy
:0 0 0O 0 O 0 Ny Ny Nyu.y (13.50)
N, 0 0
N, 0 0
| ON, O
| 0ON, O
0 0 N,
| 0 0 N,
where N, and N;, for i =1,2,...,n are the partial derivatives of the shape

functions and Ny = [Nix Naox ... Nux], Ny = [Niy Nay ... Nyy]. Due to the
banded structure of G matrix, two contributions can be identified so the geometric
stiffness matrix K may be written as [6]

K¢ =K, + K&, (13.51)

The first term involves the derivatives of w and that is the conventional buckling
term associated with the classical plate theory. On the other hand, the remaining
parts (so-called “curvature” terms) become significant for moderately thick plates
and play a role akin to the rotary inertia in the free vibration problem.

The bending contribution K¢, in natural coordinates is given by

1 1
KG, = / / G 6°Gyhdet J dedn (13.52)
—1J-1

where

N,00
Gy = [N’y 0 0} (13.53)

13.7 Stability of Mindlin Plates 259

Table 13.13 Buckling factors A = Aa?/(w2 D) for a simply supported square plate under uniaxial
initial stress (v = 0.3) using 10 x 10 mesh

a/h Exact [6] Q4 Q8 Q9

1,000 4.000 4.0897 4.0033 4.0001
20 3.944 4.0153 3.9287 3.9288
10 3.786 3.8097 3.7315 3.7315
5 3.264 3.1813 3.1255 3.1256

The shear contribution Kg; is given by

K, = f / GSIJOG“ detJdgdn
f / G &OGQ detJ dédn (13.54)

where

0N, 0 _fooN,
G = [0 N, 0}’ G2 = |:00N,)} (13.55)

All the geometric stiffness matrix components should be carried out using reduced
integration (single point for Q4 and 2 x 2 for Q8 and Q9 elements). This selection
has demonstrated to have higher accuracy of the finite element solution.

The stability problem involves the solution of the eigenproblem

[K—-XKgla=0 (13.56)

where K is the global stiffness matrix, K¢ is the global geometric matrix and) is a
constant by which the in-plane loads must be multiplied to cause buckling. Vector a
represents the buckling mode correspondent to the buckling load factor A. By solving
the generalized eigevalue problem (13.56) buckling loads and buckling modes can
be carried out.

Table 13.13 summarizes results for simply supported square plates of various
thicknesses under uniaxial O’S initial stress. We consider a 10 x 10 mesh (Fig. 13.8),
and compare present finite element formulation with closed form solution [6]. The
schematic geometry, loads and boundary conditions are illustrated in Fig. 13.7.

In Figs. 13.9, 13.10 and 13.11 the eigenmodes are illustrated, for a/h = 10.

Table 13.14 lists the results for simply-supported plates of various thicknesses
under uniaxial v = 0 and biaxial v = 1 initial stresses, where v = O’S /o? using a
30 x 30 mesh. The results are compared to the ones given in [9].

The MATLAB code problem19Buckling.m computes the problem of a Mindlin
plate under compressive, uniaxial and biaxial loads.

260 13 Mindlin Plates

)
0 0
. Oy Oy
r—-———"""""">"~>"~>">"""7~ Bl
—_—]l | =——
|
o —| |—
—_— : Simply-supported : -—
|
|
|
e T

Fig. 13.7 Buckling problem: a Mindlin plate under uniaxial initial stress

Fig. 13.8 Buckling of
Mindlin Plate: 10 x 10 mesh

This code calls function formGeometricStiffnessMindlin.m for the computation
of the geometric stiffness matrix.

% MATLAB codes for Finite Element Analysis
% probleml9Buckling.m

% Buckling analysis of Q4 Mindlin plates

% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory

13.7 Stability of Mindlin Plates

13 Mindlin Plates

13.7 Stability of Mindlin Plates

264

13 Mindlin Plates

KG (elementDof, elementDof) = KG(elementDof, elementDof) + ...
G_sl’*sigmaMatrix*thickness”3/12*G_sl*...
gaussWeights (g) *det (Jacob) ;

G_s2 = zeros(2,3*ndof);

G_s2(1,2*ndof+1:3*ndof) = XYderivatives(:,1)"’;
G_s2(2,2*ndof+1:3*ndof) = XYderivatives(:,2)"’;

KG (elementDof,elementDof) = KG(elementDof,elementDof) + ...

G_s2'*sigmaMatrix*thickness”3/12*G_s2* ...

gaussWeights (q) *det (Jacob) ;

end % end Gauss point loop
end % end element loop

end

0 0.2 0.4 0.6 0.8 1

A(3) = 0.00011339
[)

0.8

0.6

0.4

0.2

. e
0.4 0.6

0 0.2 0.8 1

0.8

0.6

0.4

0.2

A(2) = 6.2543e-05
N

0.6 0.8 1

A4) = 0.00016145

0.8

0.6

7

0.4

0.2

0.6 0.8 1

Fig. 13.9 Buckling modes (1-4) for a SSSS plate with #/a = 0.001, using 20 x 20 Q4 elements

13.7 Stability of Mindlin Plates 265

A(5) = 0.0001898 A(6) = 0.00019145
1 - \ 7 L
0.8
0.6
9 \
N \
0.4
0.2
0 f
0 02 04 06 08 1
; A(7) = 0.0002533 ; A(8) = 0.00026107
—
0.8 0.8
|
06 0.6
k& B 4
L/ \ X > \
0.4 0.4
02 0.2
o 4 N— —V
0 02 04 06 08 1 0 02 04 06 08 1

Fig. 13.10 Buckling modes (5-8) for a SSSS plate with #/a = 0.001, using 20 x 20 Q4 elements

Codes problem19aBuckling.m and problem19bBuckling.m solve Q8 and Q9
buckling Mindlin problem. They are not shown for the sake of conciseness and they
can be simply derived changing the call to the respective functions (Table 13.14).

266

A(9) = 0.00029546

0.8

0.6

0.4

0.2

0 0.2

0.4

A(11) = 0.00037364

0.6 0.8

0\

A

0 0.2

0.4 0.6 0.8

|

13 Mindlin Plates

A(10) = 0.00036417

_ N
0 0.2 0.4 0.6 0.8

-

A(12) = 0.00041044

000

i .
0 0.2 0.4 0.6 0.8 1

0

Fig. 13.11 Buckling modes (9-12) for a SSSS plate with #/a = 0.001, using 20 x 20 Q4 elements

Table 13.14 Buckling factors A = \b2 /(w2 D) for simply supported plates under uniaxial (y = 0)
and biaxial (y = 1) initial stress using 30 x 30 mesh

a/b 0.5 1

y b/h |Ref[9] | Q4 Q8 Q9 Ref[9] | Q4 Q8 Q9

0 10 5523 [5.3209 [5.3092 [5.3092 |3.800 |3.7400 |3.7314 |3.7314
20 6.051 |5.9945 |5.9798 [5.9798 |3.948 |3.9381 |3.9287 |3.9287
100 6242 |6.2546 |6.2386 |6.2386 |3.998 |4.0069 |3.9971 |3.9971
1000 62507 |6.2659 |6.2499 |6.2499 |4.000" |4.0098 |4.0000 |4.0000

1 10 4418 |4.2568 |4.2474 42474 |1.900 [1.8700 |1.8657 |1.8657
20 4.841 |4.7956 |4.7839 |4.7839 |1.974 |1.9691 |1.9643 |1.9643
100 4993 |5.0037 |4.9909 [4.9909 |1.999 [2.0034 |1.9985 |1.9985
1000 |5.000" |5.0127 |4.9999 |4.9999 |2.0007 |2.0049 |2.0000 |2.0000

. Kirchhoff theory or Classical Plate theory (CPT) [9]

References 267

References

1. J.N. Reddy, Mechanics of laminated composite plates (CRC Press, New York, 1997)

2. M. Petyt, Introduction to finite element vibration analysis (Cambridge University Press, 1990)

3. J.N. Reddy, An introduction to the finite element method (McGraw-Hill International Editions,
New York, 1993)

4. K.J. Bathe, Finite element procedures in engineering analysis (Prentice Hall, 1982)

5. J.N. Reddy, An introduction to the finite element method, 3rd edn. (McGraw-Hill International
Editions, New York, 2005)

6. E. Hinton, Numerical methods and software for dynamic analysis of plates and shells (Pineridge
Press, 1988)

7. DJ.Dawe, O.L. Roufaeil, Rayleigh-ritz vibration analysis of mindlin plates. J. Sound Vib. 69(3),
345-359 (1980)

8. K.M.Liew,J. Wang, T.Y. Ng, M.J. Tan, Free vibration and buckling analyses of shear-deformable
plates based on fsdt meshfree method. J. Sound Vib. 276, 997-1017 (2004)

9. J.N. Reddy, Energy principles and variational methods in applied mechanics, 3rd edn. (Wiley,
Hoboken, NJ, USA, 2017)

Chapter 14)
Laminated Plates G

Abstract In this chapter we consider a first order shear deformation theory for
the static, free vibration and buckling analysis of laminated plates. We introduce
a computation of the shear correction factor and solve some examples with MAT-
LAB codes. The main difference between the present chapter and the previous one
related to Mindlin plates is that due to lamination there might be a coupling between
membrane and bending behaviors.

14.1 Introduction

Here we consider a first order shear deformation theory for the static, free vibration
and buckling analysis of laminated plates. We introduce a computation of the shear
correction factor and solve some examples with MATLAB codes. The main differ-
ence between the present chapter and the previous one related to Mindlin plates is
that due to lamination there might be a coupling between membrane and bending
behaviors.

14.2 Displacement Field

In the first order shear deformation theory, displacements are the same as in Mindlin
plate theory plus the in-plane displacements as in plane stress analysis as

ui(x,y,z,t) = ux,y,t) + 20 (x, y, 1)
u2(-xayaz’t)=v(-x’yvt)+zey(-x’yvt) (141)
u3(x,y,z,t) = w(x, y,t)

the displacement vector can be defined as u’ = [u vw O, Qy].

© The Editor(s) (if applicable) and The Author(s), under exclusive 269
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_14

270 14 Laminated Plates

14.3 Strains

Strain-displacement relations (by neglecting normal transverse strain €, according to
the first order assumptions [1]) with Von Kdrmén strains are obtained by derivation
as

_ou, 00 1 (0w
Ex_ax Z@x 2\ Ox

dv 08, 1<8w)2
6)':_—’_ +

oy "oy " 2\oy
_Ou Ov 90, 90, Oow Ow (14.2)
Ty = 8y+8x+z<8y + 8x)+ ox Oy
_g 4 v
Tre =T 50
ow
Vyz = 9)’ + B_y
or in matrix form as
ou 1 <8w)2 90,
0) 1) 8)(? 2 ax
NS S a1 ow)? %
e=|¢ |=]|¢ +z|€ = 8_ 3 8_ +z By
0) (1)
Vxy Ty Ty Ou Y ov 8)111) ow 90, %
ay T T ox 0y dy = Ox
(14.3)
ow
0y + —
Y [%rz] _ [Vﬁg)} _ |7 oy (14.4)
Vxz %(cz) 9 + (9_11)
T ox

Note that membrane strains are linear through the thickness, whereas shear strains
are constant. Thus, strains can be conveniently collected as

¢ e
e € €O e

e= |70 | +z || = [(o)] +z|: 0 } (14.5)
S I RV
0] L

T T T
where €© — [6)(60) 6§o> %(3)] 7O = [YQ 7}(((?] and e = [efc” eg}) %Sly)] .

14.3 Strains 271

Strain characteristics €, v and €V can be written according to the displace-
ment parameters of the model giving the definition of three differential operators
as

2 0 000
Ox u
a v
e(o): 0 a—yOOO w | =D,u
0
o 0 Oy
— —000
| dy Ox i
0003 0
Ox u
9 v (14.6)
e(l): 000 O a— w | =Dyu
Y ||,
o o | L%
000 — —
L dy Ox |
B 0 u
00—10
Ox v
~O = w | =Dsu
9 6
00—01 X
L Oy oy

14.4 Stresses

Laminated composite plates are considered made of several orthotropic plies. Normal
stress o, is neglected so reduced elastic constants should be used. The stress-strain
relations in laminate coordinates [1] are

® Fpo AL A
Oy 011 Q1 Qe €x

Ty = le sz Q26 €y (14.7)
Oxy 016 Q2 Oss Vxy
(k) A = (k)
Oy; _ Qus Q45:| |:7yz] "
[sz] |:Q45 Oss Vxz (14.8)

where (k) identifies the generic lamina and Q,- i»i,j=1,2,4,5, 6 are the reduced
elastic coefficients [1].

272 14 Laminated Plates

In matrix form the constitutive equations (for the generic ply ©)) become

® 6 ®
7] -l e] L 149

by including the strain-displacement relations (14.6)
on=Qune” +2Que", T=Qy" (14.10)

Due to constant shear stresses given by the model the shear correction factors K,
K> should be included.

Being K, K, the shear correction factors in both directions. At each layer inter-
face, the transverse shear continuity must be guaranteed. The equilibrium equation
in x direction is written as

Joy OTyy OTx,
Oox dy 0z

—0 (14.11)

Assume cylindrical bending

¢ oy /‘ T OMyx Di(2) Ox / ? Ox
Txz = — dz = — dz = ——— D1 (2)zdz = ——g(2)
= ./_h/z Ox —hp Ox Ry Ry Jonp2 ! R ®

(14.12)
where
e (O, is the shear force in xz plane;

h/2
e R = / D, (z)zzdz represents the plate stiffness in x direction;
—h/2
e 7 is the thickness coordinate;
z

° g(z) =— / D (z)zdz represents the shear shape.
—h/2

Function g(z) which represents the shear stress diagram becomes parabolic for
homogeneous sections, g(z) = [D1h?/81[1 — 4(z/ h)?]. The strain energy is given
by

h2 o 2 2 2 2
w, =/ T gp = Q_2/ 8700 4. (14.13)
—n2 G13(2) Ry Jonpp G13(2)

being G13(z) is the transverse shear modulus in xz plane. For a constant transverse
shear deformation the strain is given by

n/2 2 02
X

_ _ _ 02 _
Wy = V:G13(@2) Y dz = —5hG) = = (14.14)
/;h/z ¢ ‘ th? hG,

14.4 Stresses 273

where

o h/2
hG] = / G13(Z)dZ (14.15)
—h/2

and 7., is the mean value for transverse shear strain. It is now possible to obtain the
shear correction factor K as

- 2
Klzﬁz Ri

w2
el / £(2)/Gra(2)dz
)

(14.16)
To obtain the second shear factor K, we proceed in a similar way [2].

14.5 Hamilton’s Principle

Governing equations of the present theory are derived using the Hamilton’s Principle.
Strain energy is given by

1 1
U= —f oledV = —/ ole +z0l eV + 774 Oqv (14.17)
2)y 2y

by including the stress definitions (14.10) where the subscript *) has been removed
for the sake of simplicity.

U %f €OTQ (O L DT G5 (O OT 5 (O
\%4
+eVT20, eV +~4OTQ 4Odv (14.18)

since the plate is considered made of several plies the volume integral can take the

form
dV = dz |dS2 = ZHld as2 14.19
[or=[([e)oo= (5[w)am osm

where nc is the number of plies in the stacking sequence of the laminate. Stiffness
constants can be defined as

274 14 Laminated Plates

Fig. 14.1 Laminated plate: >
organization of layers in the
thickness direction
Rk+1
layer k 2k
layer 1
nc
[Qudz =Y Q¥ -z = A
< k=1
1 nc
0 —— N® (-2 2y —
/ZZQm dz = 5 kX_;Qm (zip1—z) =B
= (14.20)

- 1< .
2 _ *) (.3 3\ _
z mdz——g W (zi —zi) =D
[Z Q 34 Q (i1~ 2
‘/KXQS dz = E Kngk) (Zk+l - Zk) = Ax
z k=1

where K| = K, = K is the shear correction factor. Figure 14.1 illustrates the
position of the z coordinates across the thickness direction.
In conclusion, the strain energy becomes

U =%/ {e(O)TAe“” 1+ eDTBO 4 (OTRM
2

+ eV DeD 4 yOTA O }dQ (14.21)

The potential is

Vi = —/ pwdV = —/ u’p dv (14.22)
\4 14

14.5 Hamilton’s Principle 275

where p = [0 0poO O]T, thus it is assumed that only transverse loads p are applied
to the plate. The kinetic energy takes the form

1 . .
K = 5/ p<(u + 20 + (0 4+ 20,)* + w2>dv (14.23)
\%4

performing multiplications and by introducing the inertia terms

nc Zk+1 .
I; =Z/ pzdz, for i=0,1,2 (14.24)
k=1 Tk

where nc indicates the number of layers, the kinetic energy becomes

1 S o
K = E/ (10(a2 + 07 4+ W) + 21, by + 00,) + L(6; + 9§)>d9 (14.25)
2

in matrix form it can be written as

1
K = -/ a’'Mu df2 (14.26)
2 /e

where w” = [it v W 0, 0,] and the inertia matrix is given by

Ih0O0L O
06,001
M=|00/L0O0 (14.27)
L 00LO
050016

14.6 Finite Element Approximation

The displacement parameters are independently interpolated using the same func-
tions as in the Mindlin problem

up = Zﬁi(f, Mu;, Vo = Zﬁi(fa M, wo = Zﬁi(f, nw;,

i=1 i=1 i=1

0= Ni€.mbu. 0,= Ni(€ nby; (1428)

i=1 i=l

where n depend on the order of the finite element used. Such approximation can be
easily rewritten in matrix form by introducing the shape function matrix as

276 14 Laminated Plates

g N0OOO]|d

Vo ONOOO v
u=|w|={00NO0O||W|=Nd (14.29)

O 000NO| |06

Oy 0000N|L6

where N is a matrix of size 5 x 5n which includes the shape functions N for each

. T T . T A
degree of freedom, = [uy ... uy| , V=[vi...0.] , W=[wi ... w,] , 0, =
[0 ... 0] 0, =[001 ... 0,]"

14.6.1 Strain-Displacement Matrices
The strain-displacement matrices B,,, B, and B; are derived by including the finite
element approximation in the Eqgs. (14.6) as

€® =D,,u = D, Nd* = B¥d"
€ = Dyu = D,Nd* = B d* (14.30)
~© = Du = D,Nd* = Bd*

The membrane component B (of size 3 x 5n) is given by

— 0 000
0x
BY=1| 0 N o0 , for i=1,2,...,n (14.31)
dy
ON ON
— — 000
LJy Ox _

the bending component Bl(f) (of size 3 x 5n) is

000— 0
Ox
S
B =[000 0 NT for i=1.2,0um (14.32)
dy
OOOaN ON
L dy Ox |

14.6 Finite Element Approximation 277

and the shear component B is

, for i=1,2,...,n (14.33)

14.6.2 Stiffness Matrix

After the introduction of the strain-displacement matrices B(), B\ and B®), the
strain energy for the finite element becomes

U¢ = ldeT/ {B(e)TAB(e) + B(e)TBB(e) + B(e)TBB(e)
2 . m

+B,'DB}” + B ABY }dm d (14.34)

Thus, the following matrices are given

K® _f B(e)TAB(e)dQe
K7 — Jo B BB 40

K = [,. B<6>TBB<e>dm (14.35)
Kéeb) — fge B(e)T B(e)dge
Kg? = fgy B§€)TA5,B§e)dQe

The element stiffness matrix is defined by the sum of all these components as
(e) (e) (e)
K© =K@ + K + K + K9 + K (14.36)
Note that to avoid shear locking the shear component of the stiffness matrix is com-
puted using reduced integration as it was introduced in the previous chapter.

All the integrals are evaluated in the natural coordinate system, for instance one
term of the stiffness matrix (14.36) is given by

1 1
Ko = / / BOTAB det Jd¢d (14.37)
—1J-1

thus, Gauss integration can be easily applied.

278 14 Laminated Plates

14.6.3 Load Vector
The potential of the external loads with the finite element approximation becomes
Vg = —d? / N'pd¢ = —aTfe (14.38)

where f¢ are the equivalent nodal values of the finite element due to the load.
In natural coordinates the force vector takes the form

1 1
fe = / [NTpdetJ dédn (14.39)
—1J-1

14.6.4 Mass Matrix

The mass matrix can be carried out by including the finite element approximation
into the kinetic energy (14.26) as

e 1 el T e Je
K = Ed N 'MNd2cd (14.40)

and the mass matrix can be carried out as
M¢ =/ NTMN d ¢ (14.41)

Finally the mass matrix can be written in natural coordinates as

1 1
M¢ = / / NTMN det J dédn (14.42)
-1 J-1

14.7 Stress Recovery

Once the nodal solution is carried out d¢ stresses can be recovered from constitutive
equations (please note that ®) dependency has been omitted for the sake of simplicity)

as _ _ _
Om = ng = QmE((z) + sze(l) (14.43)
= (QmBm + QmZBb) (i .

T = Qv = Q,B,d° (14.44)

14.7 Stress Recovery 279

It is noted that o, and T are only evaluated at the integration points (Gauss-
Legendre points). Values for the element corner points can be obtained by extrapo-
lation as shown in the previous chapters.

14.8 Static Analysis

We analyze a laminated sandwich 3-layer square plate (¢ = b), simply-supported on
all sides, under uniform pressure. This is known as the Srinivas problem [3], with
the following core properties:

0.999781 0.231192 0 0 0
0.231192 0.524886 0 0 0
Ooore = 0 0 0262931 0 0
0 0 0 0266810 0
0 0 0 0 0.159914

The material properties for the skins are obtained from those of the core and a
multiplying factor R:

askm = R@core

The thickness of the skins is /2/10 and the one of the core is 44 /5. In this example
we present transverse displacement and stresses in dimensionless form

0.999781 w(4, %, 0)

w =
hq
1 h 1 2h 2 2h
_ oG5 - _ V(55 %) s _ (5. 5. —%)
X) Jx_) x
q q q
Mg a _h e a _2h @ca a _2h
0y G573, 0G5 —F) g 05,5, —F)
oy, = ; Oy = ; Oy =
q q q
120,500 _, 20,5, -%)
xz q > txz T q

For various values of R, we compare results with third-order theory of Pandya [4], and
various finite element and meshless results by Ferreira [5, 6]. Results are quite good,
with the exception of the transverse shear stresses that should be further corrected

(2],
g(@)

T = GIS'VXZ (1445)

280 14 Laminated Plates

where

h/2
g§=- f g(2)dz (14.46)
—h/2

A viable alternative for the computation of the transverse shear stresses is to solve
the 3D equilibrium equation by considering o, oy, and 7, from the solution of the
2D problem.

Tables 14.1, 14.2 and 14.3 list all the present results for Q4, Q8 and Q9 elements.
The codes of the Q8 and Q9 elements are not shown here for the sake of brevity.
Code problem20.m solves this problem.

14.8 Static Analysis

282 14 Laminated Plates

Table 14.1 Square sandwich plate under uniform pressure R = 5

Method w I 72 [7L 72,
HSDT [4] 256.13 62.38 46.91 9.382 3.089 2.566
FSDT [4] 236.10 61.87 49.50 9.899 3.313 2.444
CLT 216.94 61.141 48.623 9.783 4.5899 3.386
Ferreira [S] | 258.74 59.21 45.61 9.122 3.593 3.593
Ferreira 257.38 58.725 46.980 9.396 3.848 2.839
(N = 15)[6]

Analytical [3] | 258.97 60.353 46.623 9.340 4.3641 3.2675
HSDT[7] |253.6710 59.6447 46.4292 9.2858 3.8449 1.9650
(N =11)

HSDT [7] 256.2387 60.1834 46.8581 9.3716 4.2768 22227
(N =15)

HSDT[7] |257.1100 60.3660 47.0028 9.4006 4.5481 2.3910
(N =21)

Present 260.0321 54.6108 43.6887 8.7377 2.3922 11.9608
(4x4Q4)

Present 259.3004 58.4403 46.7523 9.3505 2.9841 14.9207
(10 x 10 Q4)

Present 259.2797 58.9507 47.1606 9.4321 3.1980 15.9902
(20 x 20 Q4)

Present 259.0307 58.0208 46.4167 9.2833 2.9432 14.7159
(4 x4Q8)

Present 259.2715 59.1667 47.3334 9.4667 3.2269 16.1347
(10 x 10 Q8)

Present 259.2778 59.0739 47.2591 9.4518 3.3254 16.6272
(20 x 20 Q8)

Present 259.6740 59.6249 47.6999 9.5400 2.9332 14.6661
(4x4Q9)

Present 259.2875 59.1653 47.3323 9.4665 3.2269 16.1347
(10 x 10 Q9)

Present 259.2788 59.1302 47.3042 9.4608 3.3254 16.6272
(20 x 20 Q9)

14.8 Static Analysis

Table 14.2 Square sandwich plate under uniform pressure R = 10

283

=1

=2

=3

=2

Method w [[oy Trz Trz
HSDT [4] 152.33 64.65 51.31 5.131 3.147 2.587
FSDT [4] 131.095 67.80 54.24 4.424 3.152 2.676
CLT 118.87 65.332 48.857 5.356 4.3666 3.7075
Ferreira [5] | 159.402 64.16 47.72 4.772 3.518 3.518
Ferreira 158.55 62.723 50.16 5.01 3.596 3.053
(N =15) [6]

Analytical [3] | 159.38 65.332 48.857 4.903 4.0959 3.5154
HSDT [7] 153.0084 64.7415 49.4716 4.9472 2.7780 1.8207
(N =11)

HSDT [7] 154.2490 65.2223 49.8488 4.9849 3.1925 2.1360
(N =15)

HSDT [7] 154.6581 65.3809 49.9729 4.9973 3.5280 2.3984
(N =21)

Present 162.2395 58.1236 46.4989 4.6499 1.5126 15.1261
4 x4Q4)

Present 159.9120 62.3765 49.9012 4.9901 1.8995 18.9954
(10 x 10 Q4)

Present 159.6820 62.9474 50.3580 5.0358 2.0371 20.3713
(20 x 20 Q4)

Present 159.4510 61.9570 49.5656 4.9566 1.8721 18.7207
(4 x4Q8)

Present 159.6065 62.9404 50.3523 5.0352 2.0557 20.5571
(10 x 10 Q8)

Present 159.6108 63.0874 50.4699 5.0470 2.1190 21.1903
(20 x 20 Q)

Present 159.8469 61.9773 49.5818 4.9582 1.8674 18.6735
(4 x4Q9)

Present 159.6166 62.9403 50.3523 5.0352 2.0557 20.5571
(10 x 10Q9)

Present 159.6114 63.0874 50.4699 5.0470 2.1190 21.1903

(20 x 20 Q9)

284 14 Laminated Plates

Table 14.3 Square sandwich plate under uniform pressure R = 15

Method w I 72 [7L 72,
HSDT [4] 110.43 66.62 51.97 3.465 3.035 2.691
FSDT [4] 90.85 70.04 56.03 3.753 3.091 2.764
CLT 81.768 69.135 55.308 3.687 4.2825 3.8287
Ferreira [5] | 121.821 65.650 47.09 3.140 3.466 3.466
Ferreira 121.184 63.214 50.571 3.371 3.466 3.099
(N = 15)[6]

Analytical [3] | 121.72 66.787 48.299 3.238 3.9638 3.5768
HSDT [7] 113.5941 66.3646 49.8957 3.3264 2.1686 1.5578
(N =11)

HSDT [7] 114.3874 66.7830 50.2175 3.3478 2.6115 1.9271
(N =15)

HSDT [7] 114.6442 66.9196 50.3230 3.3549 3.0213 2.2750
(N =21)

Present 125.2176 58.4574 46.7659 3.1177 1.0975 16.4621
(4x4Q4)

Present 122.3318 62.8602 50.2881 3.3525 1.3857 20.7849
(10 x 10 Q4)

Present 122.0283 63.4574 50.7659 3.3844 1.4872 22.3084
(20 x 20 Q4)

Present 121.8046 62.4614 49.9691 3.3313 1.3653 20.4795
(4 x4Q8)

Present 121.9292 63.4574 50.7660 3.3844 1.5010 22.5146
(10 x 10 Q8)

Present 121.9327 63.6058 50.8847 3.3923 1.5476 23.2142
(20 x 20 Q8)

Present 122.1077 62.4785 49.9828 3.3322 1.3624 20.4362
(4x4Q9)

Present 121.9371 63.4574 50.7659 3.3844 1.5010 22.5146
(10 x 10 Q9)

Present 121.9332 63.6058 50.8847 3.3923 1.5476 23.2142
(20 x 20 Q9)

14.8 Static Analysis 285

The computation of the material constitutive matrices and shear correction compu-
tation is made in function srinivasMaterial.m. Since the lamination is symmetrical
computation of the coupling constitutive matrix B is not needed. The implementation
of membrane-bending coupling stiffnesses are left to the reader for generalizing the
present code.

14 Laminated Plates

14.8 Static Analysis

Because this plate element has 5 degrees of freedom, instead of 3 degrees of
freedom as in Mindlin plates, some changes were introduced and new functions
are needed. Function formStiffnessMatrixMindlinlaminated5dof.m computes the
stiffness matrix for the Q4, Q8 and Q9 Mindlin plate with 5 DOFs.

14 Laminated Plates

14.8 Static Analysis

Function formForceVectorMindlin5dof.m computes the corresponding force
vector.

14 Laminated Plates

Function EssentialBC5dof.m defines the constrained degrees of freedom in vector
form according to the selected condition.

14.8 Static Analysis

For the Srinivas example, stresses are post-processed in function SrinivasStress.m.

14 Laminated Plates

14.8 Static Analysis 293

14.9 Free Vibrations

The free vibration problem of laminated plates follows the same procedure as for
Mindlin plates. The stiffness matrix is as previously computed and the mass matrix
is obtained according to Eq.(14.42) and coded in formMassMatrixMindlinlami-
nated5dof.m which is shown below.

294 14 Laminated Plates

We consider cross-ply stacking sequences, boundary conditions and thickness-
to-side ratios according to Liew [8]. Both square and rectangular plates are studied.
Eigenvalues are expressed in terms of the non-dimensional frequency parameter @,
defined as

_ wb? |ph
0=—]—,
Wz l)o
where
Exnh?
Dy 22

T 12(1 = vipva)

Also, a constant shear correction factor K, = 72/12 is used for all computations.

The examples considered here are limited to thick symmetric cross-ply laminates
with layers of equal thickness. The material properties for all layers of the laminates
are identical as

Ei1/Ey = 40;
Gy =0.5E2; Gi3 =G =0.6Ex;
Vip = 0.25; 1 = 0.00625

We consider SSSS (simply supported on all sides) and CCCC (clamped on all sides)
boundary conditions, for their practical interest.

The convergence study of frequency parameters w for three-ply (0/90/0) sim-
ply supported SSSS rectangular laminates is performed in Table 14.4, while the
corresponding convergence study for CCCC rectangular laminate is performed in
Table 14.5. It can be seen that a faster convergence is obtained for higher ¢ /b ratios
irrespective of a /b ratios. In both SSSS and CCCC cases the results converge well to
Liew [8] results. Q8 and Q9 have a faster convergence compared to Q4 as expected.
Note that Liew [8] considers only bending vibrations, whereas the present finite
element code is able to calculate membrane and bending vibrations.

The MATLAB code problem21.m for this case is listed next.

oe

MATLAB codes for Finite Element Analysis

problem2l.m

free vibrations of laminated plates using Q4 elements

See reference:

K. M. Liew, Journal of Sound and Vibration,

Solving the vibration of thick symmetric laminates

by Reissner/Mindlin plate theory and the p-Ritz method, Vol. 198,
Number 3, Pages 343-360, 1996

A.J.M. Ferreira, N. Fantuzzi 2019

00 00 o° O Jd° d° I of of

o0
o0

14.9 Free Vibrations

296 14 Laminated Plates

modeNumber = 1;
displacements = modes (:,modeNumber) ;

% surface representation

figure; hold on

for k = l:size(elementNodes, 1)

patch (nodeCoordinates (elementNodes (k,1:4),1),

nodeCoordinates (elementNodes (k,1:4),2), ...
displacements (elementNodes (k,1:4)), ...
displacements (elementNodes (k,1:4)))

end

set (gca, 'fontsize’,18)

view (45, 45)

Table 14.4 Convergence study of frequency parameters & = (wb?/m%)+/(ph/Dy) for three-ply
(0/90/0) simply supported SSSS rectangular laminates

Modes
a/b h/b Mesh 1 2 3 4 5 6
1 0.001 5x5Q4/69607 |10.7831 [25.1919 |30.8932 |32.5750 |40.8649

10 x 10 |6.7066 |9.7430 |17.8158 |26.3878 |27.8395 |32.3408
20 x 20 | 6.6454 95190 |16.5801 |25.4234 |26.8237 |27.9061
5x5Q86.7298 | 11.8761 |25.5129 |26.3293 |40.9942 |43.1296
10 x 10 |6.6257 |9.4594 |16.2887 |25.1265 |26.6098 |26.9812
20 x 20 | 6.6252 |9.4472 |16.2067 |25.1149 |26.4989 |26.6657
5x5Q96.6273 |9.4709 |16.5004 |25.2341 |26.6244 |28.2859
10 x 10 |6.6253 |9.4486 |16.2254 |25.1223 |26.5063 |26.7742
20 x 20 | 6.6252 | 9.4471 |16.2064 |25.1149 |26.4985 |26.6650
Liew [8] 6.6252 |9.4470 |16.2051 |25.1146 |26.4982 |26.6572
0.20 5x5Q4/35913 62812 |7.6261 8.8475 | 11.3313 |12.1324
10 x 10 |3.5479 |5.8947 |7.3163 8.6545 | 9.7538 |11.2835
20 x 20 |3.5367 |5.8036 |7.2366 8.5856 | 9.3768 |10.9971
5x5Q83.5333 57852 |7.2220 8.5732 | 9.3562 |10.9857
10 x 10 |3.5329 |5.7745 |7.2107 8.5619 | 9.2617 |10.9076
20 x 20 |3.5329 |5.7738 | 7.2100 8.5613 | 9.2551 |10.9022
5x5Q9|3.5333 57850 |7.2218 8.5703 | 9.3553 |10.9848
10 x 10 |3.5329 |5.7745 |7.2107 8.5619 | 9.2617 |10.9076
20 x 20 |3.5329 |5.7738 | 7.2100 8.5613 | 9.2551 |10.9022
Liew [8] 3.5939 |5.7691 |7.3972 8.6876 | 9.1451 |11.2080

(continued)

14.9 Free Vibrations 297
Table 14.4 (continued)
Modes
a/b h/b Mesh 1 2 3 4 5 6
2 0.001 5x5Q4/24798 |8.0538 |8.1040 |11.5816 |23.5944 |23.7622
10 x 10 [2.3905 [6.9399 |6.9817 9.9192 | 15.9748 |16.0852
20 x 20 |2.3689 |6.7016 |6.7415 9.5617 | 14.6808 | 14.7815
5x5Q8/25395 |8.1685 [9.3337 |19.0756 |20.8629 |23.0502
10 x 10 |2.3625 |6.6406 |6.6728 9.6330 | 14.3779 | 14.4307
20 x 20 |2.3618 |6.6254 | 6.6647 9.4479 | 14.2886 |14.3861
5x5Q92.3625 |6.6543 |6.6939 9.4916 | 14.6031 |14.7032
10 x 10 |2.3619 |6.6271 |6.6665 9.4500 | 14.3087 | 14.4066
20 x 20 |2.3618 |6.6253 | 6.6647 9.4472 | 14.2883 | 14.3860
Liew [8] 2.3618 |6.6252 |6.6845 9.4470 | 14.2869 |16.3846
0.20 5x5Q4/2.0006 |[3.7932 |5.5767 6.1626 | 6.2479 |7.4516
10 x 10 | 1.9504 |3.5985 |[5.0782 5.5720 | 5.9030 |7.2281
20 x 20 | 1.9379 |3.5493 |4.9610 54132 | 5.8064 |7.1031
5x5Q8|1.9342 |3.5396 |4.9379 5.4064 | 5.7885 |7.1097
10 x 10 |1.9338 |3.5334 |4.9237 5.3636 | 5.7746 | 7.0604
20 x 20 | 1.9338 [3.5329 |4.9227 5.3606 | 5.7738 |7.0584
5x5Q9|1.9342 |3.5394 49378 5.4048 |5.7857 |7.0860
10 x 10 | 1.9338 |3.5333 |4.9237 5.3636 | 5.7746 | 7.0603
20 x 20 | 1.9338 [3.5329 |4.9227 5.3606 | 5.7738 |7.0584
Liew [8] 1.9393 [3.5939 |4.8755 5.4855 | 5.7691 |7.1177

Function formMassMatrixMindlinlaminated5dof.m computes the corresponding
mass matrix.

function [M] = ...

formMassMatrixMindlinlaminated5dof (GDof, numberElements, ...
elementNodes, numberNodes, nodeCoordinates, rho, thickness, I, ...

elemType, quadType)

% computation of mass matrix
% for Mindlin plate element

M = zeros (GDof) ;

% Gauss quadrature for bending part

[gaussWeights, gaussLocations] = gaussQuadrature (quadType) ;

% cycle for element

for e=1:numberElements
% indice: nodal connectivities for each element
indice=elementNodes (e, :) ;
ndof=1length (indice) ;

298 14 Laminated Plates

Codes problem21a.m and problem21b.m which use Q8 and Q9 are not listed
but they can be easily obtained by setting proper parameters.

14.9 Free Vibrations 299

Table 14.5 Convergence study of frequency parameters & = (wb?/m%)+/(ph/Dy) for three-ply
(0/90/0) clamped CCCC rectangular laminates

Modes
a/b h/b Mesh 1 2 3 4 5 6
1 0.001 5x5Q416.6943 |22.0807 |51.0268 |57.7064 |59.9352 |76.5002

10 x 10 | 15.1249 |18.4938 |27.6970 |42.6545 |44.3895 |45.5585
20 x 20 | 14.7776 | 17.8233 |25.2187 |37.5788 |39.9809 |41.6217
5x5Q8/20.6595 |33.1178 |43.4331 |51.2849 |53.7652 |64.1788
10 x 10 | 14.7825 |18.3351 |26.5149 |39.4917 |39.5065 |42.9600
20 x 20 | 14.6665 | 17.6205 |24.5328 |35.5836 |39.1616 |40.7921
5x5Q9|14.6889 |17.6999 |25.2296 |39.5279 |39.6226 |41.2499
10 x 10 | 14.6668 |17.6191 |24.5570 |35.7569 |39.1863 |40.7984
20 x 20 | 14.6655 | 17.6140 |24.5143 |35.5465 |39.1582 |40.7695
Liew [8] 14.6655 |17.6138 |24.5114 |35.5318 |39.1572 |40.7685
0.20 5x5Q4/45013 73324 79268 |9.4186 |11.9311 |12.3170
10 x 10 |4.4145 |6.8373 |7.6291 |9.2078 | 10.3964 |11.4680
20 x 20 |4.3931 | 6.7178 |7.5509 |9.1264 | 10.0084 |11.1927
5x5Q8/43873 |6.6999 |7.5364 |9.1167 |10.0065 |11.1835
10 x 10 |4.3860 |6.6799 |7.5254 |9.0984 9.8899 |11.1063
20 x 20 |4.3860 |6.6786 |7.5247 |9.0975 9.8820 |11.1010
5x5Q9/43873 6.6996 |7.5357 |9.1128 |10.0055 |11.1801
10 x 10 [4.3860 |6.6798 |7.5254 |9.0984 |9.8899 |11.1062
20 x 20 |4.3860 |6.6786 |7.5247 |9.0975 9.8820 |11.1010
Liew [8] 4.4468 |6.6419 |7.6996 |9.1852 |9.7378 |11.3991

2 0.001 5x5Q4/5.7995 |15.0869 |15.1794 |20.9280 |47.7268 |48.0954
10 x 10 |5.2624 | 11.3863 |11.4494 |15.5733 |23.0606 |23.2217
20 x 20 |5.1435 | 10.7292 |10.7872 |14.6188 |20.3457 |20.4857
5x5Q8/9.9892 | 16.9918 |17.9324 |24.3426 |27.3170 |29.1237
10 x 10 52978 | 11.1633 |11.2456 |17.4494 |20.8141 |21.1924
20 x 20 |5.1070 | 10.5337 |10.5904 |14.3631 | 19.5855 |19.7203
5x5Q9 51130 |10.6374 |10.6948 |14.4893 |20.4132 |20.5539
10 x 10 |5.1056 |10.5336 |10.5900 |14.3346 |19.6218 |19.7561
20 x 20 |5.1051 | 10.5269 |10.5833 |14.3248 |19.5708 |19.7047
Liew [8] 23618 |6.6252 |6.6845 [9.4470 |14.2869 |16.3846
0.20 5x5Q4/3.2165 |4.4538 |6.4677 |6.6996 |7.0825 |7.8720
10 x 10 |3.0946 |4.2705 |5.9857 |6.0821 |6.7327 |7.8602
20 x 20 |3.0646 |4.2207 |5.8436 |5.9323 |6.6221 |7.6291
5x5Q83.0568 |4.2108 |5.8399 |[59093 |6.6072 |7.6816
10 x 10 |3.0548 |4.2043 |5.7985 |5.8847 |6.5852 |7.5264
20 x 20 |3.0547 |4.2039 57959 |5.8831 |6.5840 |7.5157
5x5Q93.0568 |4.2101 58352 |5.9091 |6.6039 |7.6623
10 x 10 |3.0548 |4.2043 |5.7985 |5.8847 |6.5852 |7.5263
20 x 20 |3.0547 |4.2039 |5.7959 |5.8831 |6.5840 |7.5157
Liew [8] 3.0452 | 4.2481 |5.77916 59042 |6.5347 |7.6885

300 14 Laminated Plates

14.10 Buckling Analysis

Here we perform the buckling analysis of some rectangular laminated plates, using
the laminated plate formulation presented before. First of all the second order poten-
tial energy has to be carried out by including the laminated FSDT plate displacement
field (14.2) in the nonlinear Von Karman strains. Thus, following the mathematical
steps illustrated for Mindlin plates the second order potential energy becomes

1
v = 5/ <hVuT6'0Vu +hVo'6"Vu + hvu’ §'Vw
2 3 (14.47)
+v0T 6OV, + ’;—Zvez&ovey)dsz
that rewritten in matrix form becomes
Vu
1 Vv
v = _/ [VuT Vol vu” voT vol]s® | vuw | de° (14.48)
2 e Vex
Vo,
where S° is a banded 10 x 10 matrix as
(h6° 0 0 0 0 |
0 w6 0 o 0
. 0 0 6" o 0
S0 — B, (14.49)
0 0 0 —5&° o0
12 3
0 0 0 o0 —&°
L 12

where 0 is a 2 x 2 matrix of zeros. Since the scope is to introduce the finite element
approximation (14.28) it is convenient to convert the vector of gradients as

Vu V0O0oO0o u
Vv Oovooo v
Vw =100V 00 w | =Vu (14.50)
Vo, 000V O]||O0
Vo, 0000V||0,

where 0 is a 2 x 1 matrix of zeros and V is a 10 x 5 operator including partial
derivatives with respect to x and y.

Finally the second order potential (14.48) can be rewritten in matrix form and the
finite element approximation (14.28) can be included as

14.10 Buckling Analysis 301

1
v == | (Vu)'S"Vude¢
2 Jo

1 1 (14.51)
= —d7 f (VN)TSY(VN)dQ°d = —d°T / GTS'Gd2¢de
2 e 2 o
Thus, the geometric stiffness matrix K¢, is defined
K. = | G'S°Gag¢ (14.52)
Q(‘
where G is a 10 x 5n matrix with the following structure
[N, 0 0 0 0]
N, 0 0 0 O
0N, O 0 O
0N, 0 0 0
0 0N, O O
G = 0 0N, 0 0 (14.53)
0 0 0N, O
0 0 0N, O
0 0 0 0N,
| 0 0 0 0 N, |
where N;, and N;, for i =1,2,...,n are the partial derivatives of the shape

functions and N , = [lex Noy ... NM], N, = [ley Noy ... Nn,y]. Due to the
banded structure of G matrix, three contributions can be identified so the geometric
stiffness matrix K may be written as [9]

K¢ =K, + K&, + K&, (14.54)

The first term involves the derivatives of u which gives a strong contribution in
the buckling load calculation only for anisotropic plates. The second term involves
the derivatives of w and that is the conventional buckling term associated with the
classical plate theory. The third, so-called “curvature” terms, becomes significant for
moderately thick plates and play a role akin to the rotary inertia in the free vibration
problem.

The membrane contribution Kg,, in natural coordinates is given by

1 1
K¢, =/ f G’ 6°G,, hdet J dedn
-1 J-1

1 1
+ / / G!,6°G,ph det) dedny (14.55)
—-1J-1

302 14 Laminated Plates

where

N,0000 _[oN,000
G = [N,yoooo] G2 = [0 N,y000:| (14.56)

The bending contribution K¢, in natural coordinates is given by

1 1
K¢, = / / GZ&Oth det J dédn (14.57)
—1J-1
where
OON,00
G, = [0 ON, 0 0i| (14.58)

The shear contribution K¢, is given by

KS, = //Gb,aoGl—detJdgdn
h3
+ / / GSTQ&OGSQEdetJ dédn (14.59)
—-1J-1

where

000N, 0 _[ooooN,
Go = [0 00N, 0}’ G2 = [0 000 N,J (14.60)

Alternatively the second order potential can be written in the following compact

matrix form
) 1 A ~0|Nx A
ve - E(ur [h[N.N,]é [N’y]m i

+97 [Lh [N, N,]6° E) a2

w! [, h[N.N,]&° gy a2 w (14.61)
+0, [, 2 [N, N,]6° :’: a2 8,
+0) [, 5N N,]6° EV pte; é“)

All the geometric stiffness matrix components should be carried out using reduced
integration (single point for Q4 and 2 x 2 for Q8 and Q9 elements). This selection
has demonstrated to have higher accuracy of the finite element solution.

14.10 Buckling Analysis

303

Table 14.6 Buckling of square and rectangular plates N = N, b> / (72 Dyy) with four antisymmet-
ric cross-plies (0/90/0/90) simply-supported SSSS with uniaxial load

k=0 E\/Ea
a/b=0.5 5 10 20 25 40
5x5Q4 5.0167 4.4374 4.0895 4.0143 3.8976
10 x 10 47797 42237 3.8900 3.8179 3.7061
20 x 20 47235 4.1730 3.8427 3.7714 3.6608
5x5Q8 4.8876 4.2582 3.8820 3.8009 3.6751
10 x 10 47059 4.1568 3.8275 3.7564 3.6461
20 x 20 4.7050 4.1563 3.8272 3.7561 3.6458
5%x5Q9 47079 4.1589 3.8296 3.7584 3.6481
10 x 10 47052 4.1564 3.8273 3.7562 3.6460
20 x 20 47050 4.1563 3.8272 3.7561 3.6458
Exact [1] 4705 4.157 3.828 3757 3.647
a/b=1.0
5x5Q4 2.8111 2.3333 2.0526 1.9926 1.8999
10 x 10 2.6835 22238 1.9541 1.8964 1.8074
20 x 20 2.6531 2.1978 1.9307 1.8736 1.7854
5x5Q8 2.9355 2.3505 2.0083 1.9353 1.8225
10 x 10 2.6443 2.1899 1.9234 1.8664 1.7784
20 x 20 2.6432 2.1893 1.9230 1.8661 1.7782
5%5Q9 2.6447 2.1906 1.9242 1.8672 1.7793
10 x 10 2.6432 2.1893 1.9231 1.8661 1.7783
20 x 20 2.6432 2.1892 1.9230 1.8661 1.7782
Exact [1] 2.643 2.189 1.923 1.866 1.778
a/b=15
5x5Q4 3.4918 2.9827 2.6814 26167 2.5167
10 x 10 3.0790 2.5993 2.3163 2.2557 2.1620
20 x 20 2.9846 2.5136 2.2361 2.1767 2.0849
5x5Q8 3.7476 3.0560 2.6485 2.5612 24263
10 x 10 2.9775 2.4993 2.2179 2.1576 2.0645
20 x 20 2.9551 2.4868 22110 2.1520 2.0607
5%x5Q9 2.9654 2.4963 2.2200 2.1608 2.0694
10 x 10 2.9556 2.4874 22116 2.1525 2.0613
20 x 20 2.9550 2.4868 22110 2.1519 2.0607
Exact [1] 2.955 2.487 2211 2.152 2.061

304

Table 14.7 Buckling of square plate N = N,,-b?/(Eyh%); with two antisymmetric angle-plies

(45/ — 45) simply-supported SSSS with uniaxial load

14 Laminated Plates

E\/E>
a/h =10 10 25 40
5x5Q4 8.3135 12.8766 16.5941
10 x 10 7.8489 12.2307 15.7329
20 x 20 7.7394 12.0775 15.4926
5x5Q8 7.7073 12.0324 15.4347
10 x 10 7.7037 12.0274 15.4160
20 x 20 7.7035 12.0271 15.4148
5x5Q9 7.7072 12.0323 15.4337
10 x 10 7.7037 12.0274 15.4160
20 x 20 7.7035 12.0271 15.4148
Exact [1] 7.847 12.231 15.774
a/h =20
5x5Q4 9.4536 15.657 21.3698
10 x 10 8.8612 14.7192 20.1326
20 x 20 8.7229 14.4996 19.8421
5x5Q8 8.6825 14.4353 19.7570
10 x 10 8.6779 14.4280 19.7475
20 x 20 8.6776 14.4276 19.7469
5x5Q9 8.6822 14.4349 19.7566
10 x 10 8.6779 14.4280 19.7475
20 x 20 8.6776 14.4276 19.7469
Exact [1] 8.727 14.513 19.861
a/h = 100
5x5Q4 9.8958 16.8424 23.5794
10 x 10 9.2497 15.7641 22.0850
20 x 20 9.0993 15.5129 21.7366
5x5Q8 9.0625 15.4464 21.6416
10 x 10 9.0505 154312 21.6233
20 x 20 9.0501 15.4307 21.6226
5x5Q9 9.0551 15.4391 21.6342
10 x 10 9.0504 154312 21.6233
20 x 20 9.0501 15.4307 21.6226
Exact [1] 9.052 15.435 21.628

14.10 Buckling Analysis 305

14.10.1 Buckling of Cross- and Angle-Ply Laminates

Antisymmetric cross-(0/90/0/90) and angle-ply (45/—45) simply-supported lami-
nates have been tested below according to the studies of Reddy [1]. The orthotropic
material properties are

E1/Ex» = 10;
G23 = 0.2E22; Gl3 = G12 = 0~5E22;
vi2 = 0.25; 1n = 0.025

with a shear correction factor K; = 5/6 and the layers have the same thickness
according to the number of plies considered.

Results for various mesh sizes and elements are listed in Tables 14.6 and 14.7.
Excellent agreement is observed among the solutions in comparison with the exact
solution given by Reddy [1]. Q8 and Q9 finite elements have a faster convergence, as
expected with respect to Q4 elements. All results have been listed in dimensionless
form according to

_ b2
N=N,—— 14.62
le)zz ()
for the cross-ply case and
_ b?
N=N,——= 14.63
W ()

for the angle-ply case. The MATLAB code problem20Buckling.m for this case is
listed next.

% MATLAB codes for Finite Element Analysis

% problem20Buckling.m

% buckling laminated plate using Q4 elements
% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory
clear; close all

% materials
thickness = 0.001;

% initial stress matrix

sigmaX = 1/thickness;

sigmaXy = 0;

sigmaY = 0;

sigmaMatrix = [sigmaX sigmaXY; sigmaXY sigmaY];

14 Laminated Plates

14.10 Buckling Analysis

Function formGeometricStiffnessMindlinlaminated5dof.m computes the corre-
sponding geometric stiffness matrix.

14 Laminated Plates

14.10 Buckling Analysis

The material considered in the present applications is taken from Reddy [1] and code
is listed below

310 14 Laminated Plates

Codes problem20aBuckling.m and problem20bBuckling.m which use Q8 and
QO are not listed but they can be easily obtained by setting proper parameters.

References

1. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells (CRC Press, Boca Raton,
2004)

2. J.A. Figueiras, Ultimate load analysis of anisotropic and reinforced concrete plates and shells,
University of Wales (1983)

3. S. Srinivas, A refined analysis of composite laminates. J. Sound Vib. 30, 495-507 (1973)

4. B.N. Pandya, T. Kant, Higher-order shear deformable theories for flexure of sandwich plates-
finite element evaluations. Int. J. Solids Struct. 24, 419-451 (1988)

References 311

5. AJM. Ferreira, Analysis of composite plates and shells by degenerated shell elements, FEUP
(1997)

6. A.J.M. Ferreira, A formulation of the multiquadric radial basis function method for the analysis
of laminated composite plates. Compos. Struct. 59, 385-392 (2003)

7. A.J.M. Ferreira, C.M.C. Roque, P.A.L.S. Martins, Analysis of composite plates using higher-
order shear deformation theory and a finite point formulation based on the multiquadric radial
basis function method. Compos. Part B 34, 627-636 (2003)

8. K.M. Liew, Solving the vibration of thick symmetric laminates by reissner/mindlin plate theory
and the p-ritz method. J. Sound Vib. 198(3), 343-360 (1996)

9. E. Hinton, Numerical methods and software for dynamic analysis of plates and shells (Pineridge
Press, Swansea, 1988)

Chapter 15 ®)
Functionally Graded Structures oo

Abstract Inthe present chapter functionally graded materials (FGMs) and structures
are presented. In particular, the static and free vibration problems of Timoshenko
beams and Mindlin plates are studied. The buckling problem for both structures can
be developed following analogous problems presented in Chap. 10 for Timoshenko
beams and in Chap. 14 for laminated FSDT plates.

15.1 Introduction

In the present chapter functionally graded materials (FGMs) and structures are pre-
sented. In particular, the static and free vibration problems of Timoshenko beams
(with 3 degrees of freedom per node) and Mindlin plates (with 5 degrees of freedom)
per node are studied. The buckling problem for both structures can be developed
following analogous problems presented in Chap. 10 for Timoshenko beams and in
Chap. 14 for laminated FSDT plates.

A short introduction to functionally graded materials and their implementation in
the constitutive model is given. Since the FGMs are introduced only at the constitutive
level of a model short theoretical background is given. The reader should refer to
the theoretical backgrounds of Timoshenko and Mindlin plates given in the previous
chapters.

15.2 Functionally Graded Materials

Functionally graded materials (FGMs) are a new class of composite materials that
have a gradual variation along a given direction. These materials have been proposed
as thermal barrier for coating applications. They are isotropic but not homogenous
along one direction. For beams and plates the direction of homogeneity is the thick-
ness direction. In the most common applications the material is made of two con-
stituents such as metal and ceramic. These materials are used on one hand as thermal
barrier (ceramic) and ductility (metal). FGMs are mathematically presented as a con-

© The Editor(s) (if applicable) and The Author(s), under exclusive 313
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_15

314 15 Functionally Graded Structures

tinuous variation of the mechanical properties though the thickness direction. Thus,
such model involves the definition of the stress resultant (for beams) and reduced
elastic coefficients (for plates).

The most wide used formula is the power-law distribution which is valid for elastic
modulus E and material density p [1, 2]. Given two material properties P; and P,
as the material at the top (material 1) and bottom (material 2) of the two faces of the
beam or the plate the power-law distribution is given by

P) =P —P)f2)+P, (15.1)

where
(L2 152
f(Z)_<§+E> ()

and n is the power-law index. Note that for n =0, P =P, and n = oo, P = P5.
Thus, material properties and structural behavior can be tailored by the index n.

The following integrals will be used in the codes below for the computation of
the structural properties.

h/2 h
—h/2 f(Z) dz = m
/2 nh?
dg— ™" 153
—h)2 f@)zde 2+ 1)(n+2) (153
h/2 Q2+n+ nz)h3
2 _

a2 fQde = N)+ 3)

FGMs are now applied to the study of beams and plates. For functionally graded
structures the bending and axial behaviors are generally coupled so they cannot be
treated separately. Bending and stretching are uncoupled only if f(z) is symmetric
with respect to the

15.3 Timoshenko Beam

The displacement field of Timoshenko beams considering both axial and bending
behavior is

ui(x,z,t) =ulx,r) +z0,(x,1)

(15.4)
us(x,z,t) = w(x,t)

15.3 Timoshenko Beam 315

Note that axial displacements are here introduced because FGM constitutive law
couples axial and bending behaviors of the beam. Strain-displacement relationship

is

ou 09, 1 <8w>2 O L0
€Ex =5 TZ S\ 5. =€, +z€
gx Ox 2\ Ox (15.5)
w
Yoz = —=— + 0, = 'Y)(cg)

all the other strains are zero for this theory. In matrix form such relations become

(9 1[0 o]
Ox 2 \0x
€0 u
D=1, 0 I 1lw (15.6)
g x| L6
0
0 — 1
L ox _
and in matrix form becomes € = Du. The constitutive equations are
oy = E(@)ex, Tz = G(2)Vx: 15.7)

Note that the elastic and shear moduli have a variation along the beam height. The

beam strain energy is
1
U=+ Ox€x + TxzYaz AV
2 Jv

By introducing the definitions

(15.8)

S K, /E(z) ds2 (15.9)
v) Jo

Axx, Bix, D) = 17Zszz E(z) ds2, X2 — Ao~
()= [(2B =502

where K is the shear correction factor and using the integrals of f(z) givenin (15.3)
the following definitions apply

M+n n(M—1)
Axx =E2A0) Bxx = E2B0—7
1+n 2(1+n)2+n)
(6+43n+3n)M + 8n + 3n> +n?)
Dxx = E2IO s
6+ 11n + 6n2 + n3
K.E;Ag M bh3
S, = B2 M b By = bk Iy = 2~ (15.10)

T 2(14v) 14+n’

316 15 Functionally Graded Structures

where M = E,/E, is the ratio of the two elastic constituents. These elastic coeffi-
cients can be collected in the matrix

A.XX BXX 0
C=|B. Do O (15.11)
0 0 S,

The strain energy in matrix form becomes

1 L 1 L

U= —/ oledx = —/ e’ Ce dx (15.12)

2 Jo 2 Jo

the strain-displacement formulae (15.6) can be included into the strain energy as
|
U= 5 (Du)’ C(Du) dx (15.13)
0

The kinetic energy of the beam is

1 1 .
K = 5/ pid +i3) dV = 5[p(i + 20,)* + pw?) dV (15.14)
\4 14

the following inertia definitions apply

Ao (+) B()}’l
my = —— np)), m-=-——————
OT Ty T 'T 20+ m2+n)

(64 3n+3n%)p1 + 8n +3n% +n)p,

(p1 — p2)s

= 15.15
= 6+ Lln + 6n2 + 3 (1515
and the kinetic energy can be written in matrix form as
1 L
K = -/ u'Tu dx (15.16)
2 Jo

where the inertia matrix I is

my 0 mj
I=|0 my O (15.17)
mi 0 my

15.3 Timoshenko Beam 317

15.3.1 Finite Element Approximation

The finite element approximation

uy

Up

N o0 07w
u=(0 N 0| : |=Nda (15.18)

0 0 NJ|uw,

exl

axn

is introduced in the strain energy (15.13) in order to obtain the strain energy for the
element. N is the matrix of the shape functions (linear shape functions are considered
for simplicity) and d° is the vector of nodal displacements.

The strain energy for the Timoshenko beam is

1 a 1 a
U¢ = Ed”/ (DN)"C(DN) dx d° = 5deT/ B'CB dx d° (15.19)

—a

where B = DN is the matrix of the derivative of the shape functions as

ON
— 0 0
0x R
B=|¢ o N (15.20)
. Ox
ON N
0 — N
Ox
The element stiffness matrix is
a 1
K¢ :/ B”CB dx =f B CB det Jd¢ (15.21)
—a —1

where the integral has been transformed into natural coordinates. Gauss integration is
applied for obtaining the stiffness matrix. To avoid shear locking reduced integration
has to be applied to the shear component of the matrix, thus

1 1
K* =/ B/ CB, det]J d§+/ B! CB, detJ d¢ = K{ + K¢ (15.22)
-1 -1

318 15 Functionally Graded Structures

where R
N o o 0 0 0
B, = o ON B, = 0 0 0 (15.23)
b — 0 0 o ’ s — aN . .
Ox 0 —
0 0 0 Ox
full integration is used for K and reduced integration for K¢.
The kinetic energy (15.16) for the element is
e L..r [T we 1.er ! T we
K¢ = Ed N'INdxd = Ed N INdet Jd¢ d (15.24)
—a -1
the mass matrix is
1
M = / NTIN det Jd¢ (15.25)
-1

15.3.2 Bending of Micro-Beams

Simply-supported functionally graded micro-beams are considered according to the
example provided by Reddy [2]. The beams have the following mechanical properties

51 +v)
E, =144 GPa, E,=E/10, v=038, K= —"7"-
6+ 5v

h=88-10%m, b=2h L =20k p=1Nm (15.26)

The numerical results are presented in terms of the central deflection in dimen-
sionless form as w = w(L/2)E>1y/(pL4). Uniform and point loads are considered
for simply-supported beams with different power-law exponent n. Consider the point
load as pL applied at the beam central point. The finite element code which solves
the present problem is listed in code problem16fgm.m. The code is an extension of
the static problem of Timoshenko beams presented in Chap. 10.

o°

% MATLAB codes for Finite Element Analysis

% probleml6fgm.m

% Functionally graded Timoshenko beam in bending
% under uniform and point loads

% A.J.M. Ferreira, N. Fantuzzi 2019

%%
% clear memory

15.3 Timoshenko Beam

320 15 Functionally Graded Structures

formStiffnessMassTimoshenkoFgmBeam (GDof, numberElements,
elementNodes, numberNodes, xx,C, P, I, thickness) ;

% uncomment to apply the point load
% force = force.*0;

% force(round (numberNodes/2) +numberNodes) = P*L;

% boundary conditions (simply-supported at both bords)

fixedNodeU = [];

fixedNodeW = [1 ; numberNodes];

fixedNodeTX = [];

prescribedDof = [fixedNodeU; fixedNodeW+numberNodes;

fixedNodeTX+2*numberNodes] ;

% solution
displacements = solution (GDof,prescribedDof,stiffness, force) ;

% output displacements/reactions
outputDisplacementsReactions (displacements, stiffness,
GDof, prescribedDof)

U = displacements;
ws = 1l:numberNodes;

% max displacement

disp(’'max displacement’)

% min (U (ws+numberNodes))

w_bar = U(round(length (ws) /2)+numberNodes) *E2*I0/P/L"4*100

A new code formStiffnessMassTimoshenkoFgmBeam.m is given for the com-
putation of the stiffness, mass and force vector. It is recalled that reduced integration
is applied for the shear part of the stiffness matrix, whereas full integration is con-
sidered for the mass matrix and force vector. Such code is listed below

function [stiffness, force,mass] =
formStiffnessMassTimoshenkoFgmBeam (GDof, numberElements,
elementNodes, numberNodes, xx,C, P, I, thickness)

% computation of stiffness, mass matrices and force
% vector for Timoshenko beam element

stiffness = zeros(GDof) ;

mass = zeros (GDof) ;

force = zeros(GDof,1) ;

% 2x2 Gauss quadrature
gaussLocations = [0.577350269189626;-0.577350269189626] ;
gaussWeights = ones(2,1);

% bending contribution for matrices

for e = 1l:numberElements
indice = elementNodes (e, :) ;
elementDof = [indice indice+numberNodes indice+2*numberNodes] ;
indiceMass = indice+numberNodes;

15.3 Timoshenko Beam

322 15 Functionally Graded Structures

Table 15.1 Center deflections @ - 10? of simply-supported FGM micro-beams

n Uniform ref [2] Present Point load ref [2] | Present
0 0.1310 0.1309 0.2100 0.2098
1 0.3062 0.3016 0.4906 0.4787
5 0.5968 0.5962 0.9562 0.9556
10 0.6571 0.6565 1.0532 1.0526
100 1.0610 1.0599 1.7006 1.6996

stiffness(elementDof, elementDof) + ...
B’ *C*B*gaussWeights (q) *detJacobian;
end
end

end

The results given by the present code with 40 finite element are listed in Table 15.1
compared to the same results given by the semi-analytical Navier method presented
by Reddy [2]. For the uniform load case the force vector has to be used in the
form given by formStiffnessMassTimoshenkoFgmBeam.m. For the point load
the force vector has to be zero except for the force applied at the central point, thus,
comments should be removed from lines.

% uncomment to apply the point load
force = force.*0;
force (round (numberNodes/2) +numberNodes) = P*L;

The code automatically applies the point load in the central node of the finite element
mesh.

Very good match can be observed varying the power-law exponent n. Note that
when n = 1 the beam is isotropic made of material 1, on the contrary for n = oo
material 2 is the constituent of the isotropic beam.

15.3.3 Free Vibrations of Micro-Beams

For the free vibration problem the shear correction factor, width and beam length are
the same as the static case, other parameters are given below

h=17.6 x10°m, p =122x10°kg/m, p, =122 x 10*kg/m (15.27)

15.3 Timoshenko Beam 323

The finite element code which solves the present problem is listed in prob-
lem16fgmVib.m. The code is an extension of the free vibration problem of Timo-
shenko beams presented in Chap. 10.

324 15 Functionally Graded Structures

The mass matrix is computed by the function formStiffnessMassTimoshenko
FgmBeam.m. Finite element analysis with 40 elements is carried out. Results in
terms of the first three natural frequencies @, = w,L?/s/p2Ao/(E2lp) are listed in
Table 15.2 and compared to the same given by Reddy [2]. The first four mode shapes
are depicted in Fig. 15.1.

Good agreement is observed between the two solutions which proof the validity
of the present code.

15.4 Mindlin Plate 325

Table 15.2 First three natural frequencies w,, n = 1, 2, 3 of simply-supported FGM micro-beams

w1 w2 w3
n ref [2] Present ref [2] Present ref [2] Present
9.83 9.8353 38.82 38.9412 85.63 86.2024
1 8.67 8.6730 34.29 34.3826 75.79 76.0537
10 10.28 10.2898 40.47 40.5756 88.80 88.2976
4
0 X 10 T T T
St ! 1] ! !]
0 0.5 1 15 2 2.5 3 3.5 4
%107
x10*
5;rr***”4qﬁ *“*%*‘L*‘t*‘;“*ﬂgl T T =
0 -
5t L I I I M =
0 0.5 1 1.5 2 2.5 3 3.5 4
x107
x10%
5F T % v\‘\‘\‘\‘\k‘ T T 3
0 -
-5 i\-\‘\‘\“\ 1 I I I AM/'//\. E|
0 0.5 1 1.5 2 25 3 3.5 4
x10
) x10%
0 »M “‘\\\4 f '*\ i
2 E 1 1 1 1 I I B
0 0.5 1 15 2 2.5 3 3.5 4
%107

Fig. 15.1 First 4 modes of vibration for a simply-supported FGM micro-beam

15.4 Mindlin Plate

Due to the coupling between bending and membrane plate behavior the implemen-
tation of functionally graded Mindlin plates follows the theoretical background pre-
sented for laminated FSDT plates in Chap. 14, where 5 dofs per node have been
considered for the plate. For simplicity, plates made of a single FGM ply are con-
sidered instead of laminated composites, because the generalization is simple by
following the present discussion and the one already given for orthotropic laminated
plates.

Note that in the present section integral for evaluating the mechanical coefficients
are performed analytically, this is made possible since power-law is relatively simple
to treat and Poisson ratio is considered constant. Numerical integration through the
plate thickness can be carried out or the FGM ply can be seen as an equivalent
laminate made of several isotropic plies where each ply is made of a fraction of E(z)
according to the abscissa z.

326 15 Functionally Graded Structures

The constitutive equation for FGM plates made of a single ply is

Oy On QOp O 0 0 €x

Ty Or Oun O 0 0 €y

Ty | =1 0 0 Oses 0 0 Vry (15.28)

Txz 0 0 0 K;Qes 0 Yz

Tyz 0 0 0 0 K, Oes Vyz

where K is the shear correction factor and
E(z) VE(2) E(2) 1-v
Qu=1_,2 Qu=7_7=v0u Q66—2(1+V)— > Qu

(15.29)

The stiffness coefficients for the Mindlin plate can be calculated by integration [2]
as

2 W2 g
A = QndZ:/ @) dz

—hp pp 1 — 12
1 /2
= 5 / ((El —E)f(@)+ Ez)dz
L—=v>J p
E 2
= 22/ <(M—1)f(z)+l)dz
-V h/2
E>h M
_ B 1Y (1530)
1—12 +1
hy2 W2 g
Ap = Qndz= / _(2)2 dz = VA (15.31)
—h/2 —hp l—v
A h/2 Q J /11/2 E(Z) 4 1 — VA (15 32)
= 7= 7= .
o —h)2 o —np 2(1 +v) 2

where M = E|/E,. The other coefficients are given by

/2 W2 L E(;
By =/ 201 dZ=f #dz

hy2 np 1 — 12
1 hi2 Exh* (M —Dn
= Ei—E Eyz)dz =
=22 /,,/2 <(L= E)f @+ 2Z> IS 2+ D +2)
(15.33)

15.4 Mindlin Plate 327

h2 W2 2E
DH:/ zzQudzz/ TE@

h/2 —np =12

1 hy2
f ((El —E)Nf@)z* + E222>dz

zm —h/2
_ El (M —1D)Q+n+n?) 1
_1—1/2(4(n+1)(n+2)(n+3) E)
(15.34)

1—v

1—v
By =vBy1, Bes = Bii, Dip=vDy, Des= TDII (15.35)

These elastic properties are included into the strain energy definition (14.21) for
obtaining the stiffness matrix of the FGM plate. The inertia terms (needed for the
free vibration problem) takes the form

h/2 ' h/2 .
I; =/ p(z)z" dz =/ ((pl -) f@) +pz)z’ dz (15.36)

n/2 —h/2

where p; and p, are the densities of the two functionally graded constituents. By
carrying out the integrals the inertia terms become

(p1 — p2)h (p1 — p2)nh?®
P T a pymu
_ h3 2+ + 2 h3
_ (1 =p)° @2 +n n)+p2_ (15.37)
4n+ DH(n+2)(n+3) 12

0

2

such terms are used in the inertia matrix definition (14.27) for carrying out the mass
matrix of the plate.

15.4.1 Bending of Micro-Plates

The finite element modelling of the present problem has the same structure of the
one reported for laminated plates in Chap. 14. The only difference is in the coding
of the stiffness coefficients which substitute the laminated composite configuration.
The code problem20Fgm.m solves the bending of functionally graded plates under
uniform loads. The comparison is performed in terms of maximum deflection at
the plate center for simply-supported conditions as shown [2] for different FGM
power-laws n. Plate properties are

15 Functionally Graded Structures

E, =144 GPa, E, = E;/10, h = 17.6 um, a = b = 20h, p = 1 N/m>
(15.38)

where a, b are the plate dimensions and £ its thickness. Uniform applied transverse
load is p. The main code (problem20Fgm.m) given below

15.4 Mindlin Plate

Material properties and stiffness matrices A, B, D are calculated in code red-
dyFgmMaterial.m which is given below

330 15 Functionally Graded Structures

Table 15.3 Center deflections w of simply-supported FGM micro-plates with 10 x 10 mesh

n Ref [2] Q4 Q8 Q9

0 0.0044 0.0042 0.0042 0.0042
0.5 0.0071 0.0070 0.0070 0.0070
1 0.0100 0.0098 0.0099 0.0099
5 0.0194 0.0192 0.0192 0.0192
10 0.0214 0.0212 0.0212 0.0212

B1l = cl*(E1-E2)*n*h"2/(2* (n+1)* (n+2));
Bl2 = c2*(E1-E2)*n*h"2/(2* (n+l) * (n+2)) ;
B66 = c3*(E1-E2)*n*h"2/(2* (n+l) * (n+2)) ;

D11 = cl*((E1-E2)*h"3*(2+n+n"2)/(4* (n+l) * (n+2) *(n+3)) + E2*h"3/12);
D12 = c2*((E1-E2)*h"3*(2+n+n"2)/(4* (n+1) * (n+2) * (n+3)) + E2*h"3/12);
D66 = c3*((E1-E2)*h"3*(2+n+n"2)/ (4* (n+l)* (n+2)* (n+3)) + E2*h"3/12);

% inertia calculation

I0 = (rhol-rho2)*h/(n+l) + rho2*h;

I1 = (rhol-rho2)*n*h"2/(2* (n+l)* (n+2)) ;

I2 (rhol-rho2) *h"3* (2+n+n"2) / (4* (n+1) * (n+2) * (n+3)) + rho2*h"3/12;

AMatrix = [Al1l,A12,0;A12,A11,0;0,0,A66];
BMatrix = [B11,B12,0;B12,B11,0;0,0,B66];
DMatrix = [D11,D12,0;D12,D11,0;0,0,D66];
SMatrix = [A44,0;0,A55];

Inertia = [I0O 0 0 O O;
0 I2 0 I1 O;
00 I2 0 I1;
0 I1 0 I0 O;
0 0 I1 0 10];
end

The modelling is presented for Q4, Q8 and Q9 elements with a mesh of 10 x 10.
Codes problem20aFgm.m and problem20bFgm.m are not shown for the sake of
conciseness.

Table 15.3 lists the maximum plate displacement according to n power law index.
The deformed shape of the plate considering a 10 x 10 mesh and simply-supported
edges is shown in Fig. 15.2. Since the reference uses a higher order theory, shear

correction factor is not specified for this reason the shear correction factor of the
. 5(1+v) .
beam case has been considered as K, = 6(T Very good agreement is observed
v
between our solution and the one given in the literature.
Stress post-computation is not performed. However, the reader can consider the

previous implementation given for laminated plates to carrying them out.

15.4 Mindlin Plate 331

Fig. 15.2 Deformed shape
of a simply-supported
micro-plate

%107 2 2 %107

15.4.2 Free Vibrations of Micro-Plates

Free vibrations of the same plates presented in the previous sections are shown. Den-
sities of the two materials are p; = 12.2 - 10% kg/m? and p, = p;/10. All the other
parameters (geometrical and mechanical) are the same as in the previous example.
The main code is listed in problem21Fgm.m and given below

15 Functionally Graded Structures

In order to account for the mass matrix with all inertia contributions (bulk and
rotary inertias) the new code for the mass matrix generation is given in formMass-
MatrixFgmPlate5dof.m and listed below

15.4 Mindlin Plate

The fundamental frequency of square micro-plates are given in Table 15.4 by
varying the power-law index n for a 10 x 10 Q4, Q8 and Q9 elements and com-

334

15 Functionally Graded Structures

Table 15.4 Fundamental frequency w of simply-supported FGM micro-plates with 10 x 10 mesh

Power-law index n

0 1 2 3 4 5 6 7 8 9 10
Ref |6.10 |539 |[522 |532 |551 |571 |588 [6.04 |6.17 |6.27 |6.36
[2]
Q4 6.168 |5.448 5277 |5.387 |5.583 |5.785 |5.967 |6.124 |6.255 | 6.365 | 6.455
Q8 6.102 5390 |5.220 |5.329 |5.523 |5.723 |5.903 |6.058 |6.188 |6.297 | 6.386
Q9 6.102 |5.3890|5.220 |5.329 |5.523 |5.723 |5.903 |6.058 |6.188 |6.297 | 6.386

pared with the results presented in [2] where a higher order shear deformation theory
has been considered. Very good agreement is observed between the two solutions
which proofs the validity of the present code. Codes problem21aFgm.m and prob-
lem21bFgm.m for Q8 and Q9 elements are not explicitly shown, the reader just need
to change parameters in the present code accordingly in order to get such elements.

References

1. Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Mate-
rials: Design Processing and Applications, Materials Technology Series (Springer, US, 2013)
2. J.N.Reddy, Energy Principles and Variational Methods in Applied Mechanics, 3rd edn. (Wiley,
Hoboken, NJ, USA, 2017)

Chapter 16 ®)
Time Transient Analysis oo

Abstract In the present chapter time transient analysis is presented for Timoshenko
beams and laminated FSDT plates. The theoretical background mainly focuses on
how to implement linear time transient analysis in numerical methods, therefore
the reader should refer to chapters 10 and 14 for the beam and plate theories and
implementation, respectively.

16.1 Introduction

In the present chapter time transient analysis is presented for Timoshenko beams
and laminated FSDT plates. The theoretical background mainly focuses on how to
implement linear time transient analysis in numerical methods, therefore the reader
should refer to Chaps. 10 and 14 for the beam and plate theories and implementation,
respectively.

16.2 Numerical Time Integration

Newmark’s time integration method for second order differential equations is briefly
described below. In the Newmark method functions of time and their derivatives are
approximated using Taylor’s series truncated up to the second order derivative. Time
increment is indicated as dt = t;41 — t;, where ;4 and ; indicate the forward and
backward time integration points. If A indicates the generalized global vector of kine-
matic displacements of the finite element discrete model, velocity and acceleration
vectors can be carried by

As =A.s+a As—i—a AA
S ! 2 . (16.1)
Aerl = a3(AS+1 - As) - a4As - aSAs

© The Editor(s) (if applicable) and The Author(s), under exclusive 335
license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-47952-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-47952-7_16

336 16 Time Transient Analysis

where

2 1—
ap=(1—a)dt, a=adt, a3 = ——, as=as dt, as= it} (16.2)
dt Y

The parameters « and y are selected according to the time integration method imple-
mented. Their choice is related to the approximation error introduced by the time
integration method. These methods are stable when the introduced error is bounded
(e.g. limited) or conditionally stable when the error is bounded only according to a
stability condition such as

dt <dt,, = (v —)72 (16.3)

1
\/EW ‘max

where wiax 1S the maximum eigenvalue computed with the linear eigenvalue problem
(used for the free vibration analysis).
The Newmark’s method contains the following methods

1 1

o o= > ¥ = 5: constant average acceleration method (stable)
1 | . ..

o o= E’ ¥ = 5: linear acceleration method (conditionally stable)
1 1 . ..

o o= > vy = 8: Fox-Goodwin scheme (conditionally stable)
1

o o= o v = 0: central difference method (conditionally stable)
3 8 .

= > vy = g: Galerkin method (stable)
3 .

o o= o ~v = 2: backward difference method (stable).

The algebraic system of equations at the time #,; takes the form

KA, =F —> A, =K'F (16.4)
where

K=K, +aM,

A . . (16.5)

F=F; | +Mi(azAs + asAs + asAy)
Note that all the A quantities at 7, are known as well as time evolution of stiffness K
and mass M, matrices and force vector F; at ¢, ;. In the following applications
only the external force vector will change, whereas stiffness and mass matrices will
remain constant.

16.2 Numerical Time Integration 337

Definition (16.2) fail for central difference scheme with v = 0, thus an alternative
form of the Eq. (16.4) should be considered

KA, =F - A, =K'F (16.6)

where |
K = Ms+l + _Kx+l
as

) o as (16.7)
F= Fs-H - KS+1(AS + —A; + —Ay)
as as

so the problem is solved in terms of accelerations instead of displacements.

Both algebraic systems (16.4) and (16.6) need starting values to be initiated (e.g.
initial conditions). If displacement A, and velocity AO vectors should be known at
the initial time step f, the acceleration vector Ao is not known. However, it should
be carried out as

Ay =M (Fy — KoAg) (16.8)

Numerical implementation follows the following steps

Define time vector and time step dt.

Identify best time integration method for the list given and set v and 7.
Initialize displacement Ao and velocity A, vectors

. Carry out acceleration vector Ay with expression (16.8).

Use (16.4) or (16.6) for evaluatlng the solutlon at the generic time step ;.
Calculate acceleration A s+1 and velocity A s+1 vectors or displacement A, and
velocity A_H_l vectors according to the previous selection.

7. Iterate the last two steps up to the end of the time frame.

A e e

For simplicity in the present applications structural damping CA, is not included
in the discrete model. However, it can be easily included without losing generality [1].
For instance, the well-known Rayleigh damping can be used for including damping
effects in the numerical model.

16.3 Clamped Timoshenko Beam

This example has been taken from the book by Reddy [1] which considers the trans-
verse motion of a beam with initial configuration in free motion (e.g. no exiting force
is applied). The beam is of unitary length L = 1 with initial conditions

w(x,0) =sinmx —wx(1 —x), 0(x,0) = —mwcosmx +m(1 —2x) (16.9)

338 16 Time Transient Analysis

Fig. 16.1 Central transverse]] !]
deflection of a clamped beam 0.2
in free motion with

0.15
dt =0.005and o =y =0.5

central point motion
o

time

beam stiffness E/ = 1 and pA = 1, then kGA = 4EI/H2, where H is the cross-
section height (assuming cross-section rectangular). Moment of inertia/ = BH?3/12,
poisson ratio v = 0.25 and shear correction factor k = 5/6. A stable method with
a =y = 0.5 is considered, dt = 0.005 for a total time o, = 0.5.

The code problem16timeReddy.m is listed below and gives the time history of
the central point of the clamped beam under study depicted in Fig. 16.1. The present
result closely matches the one provided by Reddy [1].

MATLAB codes for Finite Element Analysis

problemlé6timeReddy.m

Timoshenko beam time transient analysis

ref: J.N. Reddy, an introduction to Finite Element Method 3rd Ed.
Example 6.2.2 page 332

A.J.M. Ferreira, N. Fantuzzi 2019

o° P o° o 0P o°

%%
% clear memory
clear

modulus of elasticity

shear modulus

second moments of area

length of beam

thickness: thickness of beam

oisson = 0.25; L = 1; thickness = 0.01; I = thickness"3/12;
= 1/I; rho = 100; EI = E*I; kapa = 5/6;

EHQHE

'8 o0 o° o0 o° o°

oP

constitutive matrix
= E/2/ (l+poisson) ;
= [EI 0; 0 kapa*thickness*G];

Q @

% mesh

16.3 Clamped Timoshenko Beam

340 16 Time Transient Analysis

+ ad4.*velocitiesTime(:,1i-1)
+ a5.*accelerationsTime(:,1-1));
stiffnessHat = stiffness + a3.*mass;

displacementsTime(:,i) = solution (GDof,prescribedDof, ...
stiffnessHat, forceHat) ;

accelerationsTime(:,i) = a3* (displacementsTime(:,1i)
- displacementsTime(:,1i-1))
- ad.*velocitiesTime(:,1i-1)
- ab5.*accelerationsTime(:,i-1);
velocitiesTime(:,1i) = velocitiesTime(:,i-1)
+ al.*accelerationsTime(:,1i-1)
+ a2.*accelerationsTime(:,1);
end

% central point vs time

figure;

plot (time,displacementsTime (round (numberNodes/2),:), ...
’.-','linewidth’, 2, ‘markersize’,16)

xlabel (‘time’); ylabel (’‘central point motion’)

ylim([-0.24 0.24])

set (gca, 'linewidth’, 2, 'fontsize’, 14)

grid on; box on;

16.4 Simply-Supported Laminated Plate

Transient solution of antisymmetric cross-ply laminate (0/90) using FSDT is consid-
ered below. Q4 10 x 10 mesh is considered with material and geometric properties as

E, =25E;, E» =2.1-10° N/em?, G = G135 = 0.5E>, Gaz = 0.2E,,

vip =025, 15 =001, p=8-10"°*N-s*/cm*, a =b =25cm
(16.10)
Two values of the side-to-thickness ratios are considered a/h = 10 and a/h = 25.
The plate is under uniformly distributed load p = go(1 — cos(wpt)), where gg = 1
N/cm? and wy = 0.0185 wHz. Time scale is in ps (micro-seconds) and the plate
is simply-supported. Newton’s parameters are chosen as stable with o = 1/2 and
v =1/2.
The code problem20timeReddy.m lists the program for the present problem
which has been taken from [2] of Sect. 7.6, some data are not given thus have been
selected by the authors.

% MATLAB codes for Finite Element Analysis
% problem20timeReddy.m
% laminated plate time transient using Q4 elements

16.4 Simply-Supported Laminated Plate

16 Time Transient Analysis

16.4 Simply-Supported Laminated Plate 343

The stiffness matrices for the present material configuration are carried out in
reddyLaminateMaterial.m listed below. Note that the code computes A, B and D
matrices of the consitutive law and inertia matrix I. Since for the present lamination
scheme /; = 0 previous implementation of the mass matrix formation could be used,
which needs material density p and inertia 4°/12. However, the present implemen-
tation that takes some snippets from the FGM codes is more general and it is valid
for anisotropic lamination schemes also wherein inertia matrix has /; # 0.

344 16 Time Transient Analysis

AMatrix = [A(1,1),A(1,2),A(1,6);
A(1,2),A(2,2),A(2,6);
A(l 6) ,A(2,6),A(6,6)];

BMatrix = [B(1,1),B(1,2),B(1,6);
B(1,2),B(2,2),B(2,6);
B(1,6),B(2,6),B(6,6)];

DMatrix = [D(1,1),D(1,2),D(1,6);
D(1,2),D(2,2),D(2,6);

(l 6), D(2 6),D(6,6)];

SMatrix = [kapa*A(4,4),kapa*A(4,5);
kapa*A(4,5) ,kapa*A(5,5)1;

Inertia = [I0 0 0 0 O; 0 I2 O I1 O; O O I2 O I1;

0 I1 0 I0 0; 0 0 I1 O IO];
end

% effective properties according to the orientation theta.
function barQ = effective_props(Q, thetak)

theta = deg2rad(thetak) ;

cc = cos(theta);

ss = sin(theta);

barQ(1,1) = Q(1,1)*cc™4 + 2*(Q(1,2)+2*Q(6,6))*cc"2*ss"2
+ Q(2,2)*ss"4;

barQ(1,2) = (Q(1,1) + Q(2,2) -4*Q(6,6))*cc”2*ss"2
+ Q(1,2)*(cc™4 + ss74);

barQ(2,2) = Q(1,1)*ss™4 + 2*(Q(1,2)+2*Q(6,6))*cc”2*ss"2
+ Q(2,2)*cc™4;

barQ(1,6) = (Q(1,1) -Q(1,2) -2*Q(6,6))*cc”3*ss ...
+ (Q(1,2) - Q(2,2) +2*Q(6,6))*cc*ss”3;

barQ(2,6) = (Q(1,1) - Q(1,2) —2*Q(6,6))*cc*ssA3
+ (Q(1,2) - Q(2,2) +2*Q(6,6))*cc”3*ss;

barQ(6,6) = (Q(1,1) + Q(2,2) —2*Q(1,2) -2*Q(6,6))*cc”2*ss"2 ...
+ Q(6,6)*(cc™4 + ss74);

barQ(4,4) = Q(4,4)*cc”2 + Q(5,5)*ss"2;

barQ(4,5) = (Q(5,5) - Q(4,4))*cc*ss;

barQ(5,5) = Q(5,5)*cc”2 + Q(4,4)*ss"2;

end

The ratio between static and dynamic response for the present plate is w, /w; = 2.000
(the value indicated by Reddy [2] is 2.049).

Deflection is shown in dimensionless form as w = w(0, 0, 1) E2h*/(goa®) - 107
in Fig.16.2 for different values of a/h. Figure 16.3 shows that the chosen time
integration method (v = v = 0.5) is stable for any dr chosen, in fact, the solutions
do not change by changing dr.

Further, calculations can be carried out for instance by plotting the transient
stresses after post-computation is applied. For implementing post-computation the
reader can refer to the bending of laminated FSDT plates. In order to see the effects
due to another possible implementation is to introduce evolution of the stiffness and
mass matrices also (not only external force) for modeling viscous material behavior.
The present section does not consider Q8 and Q9 elements, the reader can easily
obtain these codes by setting proper parameters to the given one.

References

Fig. 16.2 Central transverse
deflection of a
simply-supported (0/90)
plate with df = 5 ps and
a=7=05

Fig. 16.3 Central transverse
deflection of a
simply-supported (0/90)
plate with dt = 25, 10,5 ps
anda=v=0.5

References

central point motion

central point motion

345

0 200

800

1000
time
Ar ,' ' . e |
A f\ X di=10ps &
[l
X

ol
P4
(]

3t ;

25F b ¢

2t .ZL

15F

1-}[
x

0.5;}‘
oy

0 200

800

1. J.N. Reddy, An Introduction to the Finite Element Method, 3rd edn. (McGraw-Hill International

Editions, New York, 2005)

2. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells (CRC Press, 2004)

Index

A

Assembly of stiffness matrix, 31, 34
Axes transformation, 126

Axial stresses, 38

B
Bar element, 27
Bending stiffness, 215, 236
Bending stiffness matrix, 277
Bending strains, 231
Bending stresses, 231
Bernoulli beam, 89
Bernoulli beam free vibrations, 99
Bernoulli beam problem, 93
Bernoulli beam with spring, 97
B matrix, 47, 175, 233
bending, 276
membrane, 276
shear, 277
Boundary conditions, 242
Buckling analysis of Mindlin plates, 253
Buckling analysis of Timoshenko beams,
165

C

Constitutive matrix, 172

Coordinate transformation, 126, 142
Cross-ply laminates, 294
Cylindrical bending, 272

D
Determinant of Jacobian matrix, 234
Distributed forces, 28

E

Eigenproblem, 166, 259

Equations of motion of Mindlin plates, 244
Essential boundary conditions, 35, 173
Benoulli beam, 89

Exact Gauss quadrature, 178, 235

External forces, 173

External work, 39, 90

F
Finite element steps, 29
Force vector

3D frame, 126

grids, 142

Mindlin plate, 235

plane stress, 175
Free vibrations of laminated plates, 293
Free vibrations of Mindlin plates, 244
Free vibrations of Timoshenko beams, 159
Functionally graded materials, 313
Fundamental frequency, 245

G

Gauss quadrature, 43, 154, 178
Generalized eigenproblem, 244, 259
Geometric stiffness matrix

© The Editor(s) (if applicable) and The Author(s), under exclusive 347

license to Springer Nature Switzerland AG 2020

A.J. M. Ferreira and N. Fantuzzi, MATLAB Codes for Finite Element Analysis,

Solid Mechanics and Its Applications 157,

https://doi.org/10.1007/978-3-030-47952-7

https://doi.org/10.1007/978-3-030-47952-7

348

Mindlin plate, 258, 301
Grid example, 143, 147
Grids, 141

stiffness matrix, 141

H

Hamilton principle, 244
Hermite shape functions, 91
Hooke’s law, 38

I

Initially stressed Mindlin plate, 253
Integration points, 178
Interpolation of displacements, 153
Inverse of Jacobian, 177

J
Jacobian, 40, 177

K

Kinetic energy, 159
bar element, 42
2D frame, 107

Kirchhoff plates, 207

L

Lagrange shape functions, 176, 179
Laminated plates, 269

Local coordinate system, 59, 105

M
Mass matrix
Mindlin plate, 235
2D frame, 107
MATLAB codes
EssentialBC.m, 217
EssentialBC5dof.m, 290
eigenvalue.m, 55
forcesInElementGrid.m, 145
formForceVectorK.m, 218
formForceVectorMindlin.m, 239
formForceVectorMindlin5dof.m, 289
formGeometricStiffnessMindlin.m,
265
formGeometricStiffnessMindlin-
laminated5dof.m, 307
formMass2Dframe.m, 120
formMass3Dframe.m, 137

Index

formMass3Dtruss.m, 88

formMassMatrixFgmPlate5dof.m,
332

formMassMatrixMindlinlaminated-
5dof.m, 297

formMassMatrixMindlin.m, 252

formStabilityBernoulliBeam.m, 103

formStiffness2Dframe.m, 110

formStiffness2Dtruss.m, 63

formStiffness3Dframe.m, 129

formStiffness3Dtruss.m, 81

formStiffnessBernoulliBeam.m, 96

formStiffnessBucklingTimoshenko-
Beam.m, 169

formStiffnessGrid.m, 144

formStiffnessMassTimoshenko-
Beam.m, 157

formStiffnessMassTimoshenkoFgm-
Beam.m, 320

formStiffnessMass2D.m, 190

formStiffnessMatrixK.m, 218

formStiffnessMatrixMindlinlaminat-
ed5dof.m, 287

formStiffnessMatrixMindlin.m, 239

gaussQuadrature.m, 193

JacobianK.m, 221

Jacobian.m, 191

MindlinStress.m, 242, 244

problem1.m, 32

problem2.m, 45

problem3a.m, 51

problem3.m, 48

problem3vib.m, 52

problem4.m, 61

problem5.m, 66

problem5vib.m, 72

problem6.m, 69

problem7.m, 79

problem7vib.m, 87

problem8.m, 84

problem9.m, 94

problem9a.m, 97

problem9buk.m, 103

problem9vib.m, 99

problemK.m, 215

problem10.m, 107, 109

problem11.m, 111, 114

problem11b.m, 114

problem11bvib.m, 118

problem12.m, 128

problem13.m, 131

problem13vib.m, 136

problem14.m, 143, 144

Index

problem15.m, 147
problem16Buckling.m, 166
problem16fgm.m, 318
problem16fgmVib.m, 323
problem16.m, 156
problem16timeReddy.m, 338
problem16vibrations.m, 161
problem16vibrationsSchultz.m, 164
problemi7a.m, 185
problem17b.m, 185
problem17.m, 184, 185
problem18a.m, 199
problem18b.m, 199
problem18.m, 197
problem18vib.m, 202
problem19Buckling.m, 260
problem19.m, 236
problem19Vibrations.m, 250
problem20Buckling.m, 305
problem20Fgm.m, 328
problem20aFgm.m, 330
problem20bFgm.m, 330
problem20.m, 285
problem20timeReddy.m, 340
problem21Fgm.m, 331
problem21.m, 294
reddyFgmMaterial.m, 329
reddyLaminateMaterialBuk.m, 309
shapeFunctionK12.m, 221
shapeFunctionK16.m, 221
shapeFunctionsQ.m, 191
shapeFunctionKQ4.m, 225
SrinivasStress.m, 291
solution.m, 48
srinivasMaterial.m, 287
stresses2D.m, 191
stresses2Dtruss.m, 64
stresses3Dtruss.m, 82
outputDisplacementsReactions.m, 35

Mindlin plate theory, 269

Mindlin plates, 229

Modes of vibration, 161, 244

N

Natural boundary conditions, 173
Natural coordinate system, 39
Natural frequencies, 159, 244
Nodal point stresses, 182

P
Plane stress, 171
Potential energy, 173

349

Prescribed degrees of freedom, 35
Problem 14, 144
Problem 16 vib, 161
Problem 17, 185
Problem 17a, 185
Problem 17b, 185
Problem 18, 197
Problems
Essential BC, 217
formMass3Dtruss, 88
formStabilityBernoulliBeam.m, 103
problem K, 215
problem 1, 32
problem 2, 45
problem 3, 48
problem 4, 61
problem 5, 66
problem 5 vibrations, 72
problem 6, 69
problem 7, 79, 87
problem 8, 84
problem 9, 94
problem 9a, 97
problem9buk.m, 103
problem 9vib, 99
problem 10, 107, 109
problem 11, 111, 114
problem 11b, 114
problem 11bvib, 118
problem 11vib, 118
problem 12, 128
problem 13, 131
problem 13vib, 136
problem 14, 143
problem 15, 147
problem 16, 156
problem16Buckling, 166
problem 16 FGM, 318
problem 16 FGM vibrations, 323
problem 16 time transient Reddy, 338
problem16vibrations, 161
problem16vibrationsSchultz, 164
problem 17, 184
problem 18, 197
problem 18a, 199
problem 18b, 199
problem 18vib, 202
problem 19, 236
problem19Buckling, 260
problem19Vibrations, 250
problem?20, 285
problem20Buckling, 305
problem 20 FGM, 328
problem 20 time transient Reddy, 340

350

problem21, 294
problem 21 FGM, 331

Q

Q4 element, 233

Q8 element, 233

Q9 element, 233

Quadrilateral element Q4, 176, 233
Quadrilateral element QS8, 233
Quadrilateral element Q9, 233

R

Reactions, 35

Reduced Gauss quadrature, 235
Rotation matrix, 126, 142

S
Shape functions, 39, 40, 91, 153, 174, 176,
179, 233
Shear correction factor, 152, 232, 272, 294,
305
Shear deformations theories
Mindlin theory, 269
Shear locking, 154, 235
Spring element, 27
Stiffness matrix, 40
assembly process, 42
bar element, 28, 40
Bernoulli beam, 91
grids, 141
Mindlin plate, 234
plane stress, 175
Timoshenko beams, 153
3D frame, 126
3D truss, 78
2D frame, 106
2D truss element, 59
Strain energy, 42, 59, 317

Index

bar element, 38, 42
Bernoulli beam, 90
Mindlin plate, 232, 233
plane stress, 173
Timoshenko beams, 152
2D frame, 107
Stresses
2D truss, 60
Stress recovery, 181
Stress-strain relations, 231
Surface tractions, 175

T
Timoshenko beams, 151
Transformation, 106
Transverse shear stresses, 152, 231
Transverse strains, 231
3D frame, 123
stiffness matrix, 126
3D frame problem, 128
3D truss, 77
stiffness matrix, 78
stresses, 85
3D truss problem, 79, 83
2D frame, 105
mass matrix, 107, 120
stiffness matrix, 106, 109
2D frame problem, 107, 111
2D frame problem free vibrations, 118
2D truss, 57
stiffness matrix, 63
stresses, 64
2D truss problem, 61, 66
2D truss problem with spring, 69
Two-node bar finite element, 38
Two-node element, 159

A\
Vector of equivalent forces, 42

	Preface to the Second Edition
	Preface to the First Edition
	Contents
	1 Short Introduction to MATLAB
	1.1 Introduction
	1.2 Getting Started
	1.3 Matrices
	1.3.1 Operating with Matrices
	1.3.2 Statements
	1.3.3 Matrix Functions
	1.3.4 Inverse
	1.3.5 Component Operations
	1.3.6 Colon Notation and Submatrices

	1.4 Loops and Repetitive Actions
	1.4.1 Conditionals, if and Switch
	1.4.2 Loops: For and While
	1.4.3 Relations and Logical Operators
	1.4.4 Logical Indexing

	1.5 Library and User Defined Functions
	1.5.1 Standard Library
	1.5.2 Vector Functions
	1.5.3 Matrix Functions
	1.5.4 Scripting and User's Defined Functions
	1.5.5 Debug Mode

	1.6 Linear Algebra
	1.7 Graphics
	1.7.1 2D Linear Plots
	1.7.2 3D Linear Plots
	1.7.3 3D Surface Plots
	1.7.4 Patch Plots

	References

	2 Discrete Systems
	2.1 Introduction
	2.2 Springs and Bars
	2.3 Equilibrium at Nodes
	2.4 Some Basic Steps
	2.5 First Problem and First MATLAB Code
	References

	3 Bars or Trusses
	3.1 Introduction
	3.2 A Bar Element
	3.3 Post-computation of Stress
	3.4 Numerical Integration
	3.5 Isoparametric Bar Under Uniform Load
	3.6 Fixed Bar with Spring Support
	3.7 Bar in Free Vibrations
	References

	4 Trusses in 2D Space
	4.1 Introduction
	4.2 2D Trusses
	4.3 Stiffness Matrix
	4.4 Mass Matrix
	4.5 Post-computation of Stress
	4.6 First 2D Truss Problem
	4.7 Second 2D Truss Problem
	4.8 2D Truss with Spring
	4.9 2D Truss in Free Vibrations
	Reference

	5 Trusses in 3D Space
	5.1 Introduction
	5.2 Basic Formulation
	5.3 First 3D Truss Problem
	5.4 Second 3D Truss Example
	5.5 3D Truss Problem in Free Vibrations
	Reference

	6 Bernoulli Beams
	6.1 Introduction
	6.2 Bernoulli Beam
	6.3 Bernoulli Beam Problem
	6.4 Bernoulli Beam with Spring
	6.5 Bernoulli Beam Free Vibrations
	6.6 Stability of Bernoulli Beam
	References

	7 Bernoulli 2D Frames
	7.1 Introduction
	7.2 2D Frame Element
	7.3 First 2D Frame Problem
	7.4 Second 2D Frame Problem
	7.5 2D Frame in Free Vibrations

	8 Bernoulli 3D Frames
	8.1 Introduction
	8.2 Matrix Transformation in 3D Space
	8.3 Stiffness Matrix and Vector of Equivalent Nodal Forces
	8.4 Mass Matrix
	8.5 First 3D Frame Problem
	8.6 Second 3D Frame Problem
	8.7 3D Frame in Free Vibrations

	9 Grids
	9.1 Introduction
	9.2 First Grid Problem
	9.3 Second Grid Problem

	10 Timoshenko Beams
	10.1 Introduction
	10.2 Static Analysis
	10.3 Free Vibrations
	10.4 Buckling Analysis
	References

	11 Plane Stress
	11.1 Introduction
	11.2 Displacements, Strains and Stresses
	11.3 Boundary Conditions
	11.4 Hamilton Principle
	11.5 Finite Element Discretization
	11.6 Interpolation of Displacements
	11.7 Element Energy
	11.7.1 Quadrilateral Element Q4
	11.7.2 Quadrilateral Elements Q8 and Q9

	11.8 Post-processing
	11.8.1 Stress Extrapolation
	11.8.2 Inter-element Averaging

	11.9 Plate in Traction
	11.10 2D Beam in Bending
	11.11 2D Beam in Free Vibrations
	Reference

	12 Kirchhoff Plates
	12.1 Introduction
	12.2 Mathematical Background
	12.3 Finite Element Approximation
	12.3.1 Interpolation Functions
	12.3.2 Stiffness Matrix

	12.4 Isotropic Square Plate in Bending
	12.5 Orthotropic Square Plate in Bending
	References

	13 Mindlin Plates
	13.1 Introduction
	13.2 The Mindlin Plate Theory
	13.2.1 Displacement Field
	13.2.2 Strains
	13.2.3 Stresses
	13.2.4 Hamilton's Principle

	13.3 Finite Element Discretization
	13.4 Stress Recovery
	13.5 Square Mindlin Plate in Bending
	13.6 Free Vibrations of Mindlin Plates
	13.7 Stability of Mindlin Plates
	References

	14 Laminated Plates
	14.1 Introduction
	14.2 Displacement Field
	14.3 Strains
	14.4 Stresses
	14.5 Hamilton's Principle
	14.6 Finite Element Approximation
	14.6.1 Strain-Displacement Matrices
	14.6.2 Stiffness Matrix
	14.6.3 Load Vector
	14.6.4 Mass Matrix

	14.7 Stress Recovery
	14.8 Static Analysis
	14.9 Free Vibrations
	14.10 Buckling Analysis
	14.10.1 Buckling of Cross- and Angle-Ply Laminates

	References

	15 Functionally Graded Structures
	15.1 Introduction
	15.2 Functionally Graded Materials
	15.3 Timoshenko Beam
	15.3.1 Finite Element Approximation
	15.3.2 Bending of Micro-Beams
	15.3.3 Free Vibrations of Micro-Beams

	15.4 Mindlin Plate
	15.4.1 Bending of Micro-Plates
	15.4.2 Free Vibrations of Micro-Plates

	References

	16 Time Transient Analysis
	16.1 Introduction
	16.2 Numerical Time Integration
	16.3 Clamped Timoshenko Beam
	16.4 Simply-Supported Laminated Plate
	References

	Index

